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Resumen

Se examina el problema de aprendizaje supervisado en su planteación continua. Posteriormente se da una condición
de optimalidad general a través de técnicas del análisis funcional y el cálculo de variaciones. Esto nos permite
resolver la condición de optimalidad para la función deseada u numéricamente y hacer varias comparaciones con
otros modelos de aprendizaje supervisado ampliamente utilizados. Se emplea la precisión porcentual y el área
bajo la curva caracteŕıstica operativa del receptor (AUC por sus siglas en inglés) como métricas del rendimiento.
Finalmente, se realizan 3 análisis basados en estas dos métricas mencionadas donde comparamos los modelos y
hacemos conclusiones para determinar si nuestro método es competitivo o no.

Palabras Clave: aprendizaje variacional, aprendizaje automático, inteligencia artificial

A New Variational Model for Binary Classification in the
Supervised Learning Context

Abstract

We examine the supervised learning problem in its continuous setting and give a general optimality condition
through techniques of functional analysis and the calculus of variations. This enables us to solve the optimality
condition for the desired function u numerically and make several comparisons with other widely utilized supervised
learning models. We employ the accuracy and area under the receiver operating characteristic curve as metrics of
the performance. Finally 3 analyses are conducted based on these two mentioned metrics where we compare the
models and make conclusions to determine whether or not our method is competitive.

Keywords: variational learning, supervised learning, artificial intelligence.

Introduction

The problem of supervised learning arises in contexts
where a study of a dependent variable Y is necessary in
terms of an independent variable X. The goal of super-
vised learning is to predict the values of Y given many in-
stances of the variable X. Generally, we call the instances
of X and the values Y takes, the inputs and outputs. In
the pattern recognition context we typically may read
features and responses respectively as an alternative ter-
minology. With this in mind, it is noteworthy that we
are in fact assuming the existence of a function between

X and Y such that Y = f(X). That is, there exists a re-
lationship between the two variables. In general, we say
there are two main tasks in supervised learning: clas-
sification and regression. We make the distinction be-
tween these two contexts by defining classification as the
task that classifies inputs into several classes and regres-
sion as the task which estimates the functional relation-
ship between two variables. To summarize the supervised
learning concerns itself with the estimation of a function
f̂ such that Y ≈ f̂(X). Admittedly, the interpretation
of supervised learning is to let a mathematical or compu-
tational model “learn by example”. The examples being
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the values X takes, while the learning process is the iden-
tification of patterns given by the relationship between
X and Y. Chiefly, supervised learning is catalogued as a
form of artificial intelligence [1]. In recent years many
supervised learning methods have been developed and
many have been reviewed time and time again [2–5].
One of the most recent reviews was conducted by Singh
et al. [2], which tests many different methods on a sin-
gle dataset and presents the advantages and disadvan-
tages in a textual manner and establishes their appli-
cation areas. A slightly older but extremely exhaus-
tive analysis was conducted by Fern’andez-Delgado et
al. which evaluates 179 classifiers arising from 17 fami-
lies on 121 datasets [3]. Support Vector Machines (SVB)
and Random Forests are the top performing methods.
Kotsiantis et al. [4] have conducted a more comprehen-
sive review of various different classification methods in
which they show that SVM and Neural Networks (NN)
were the best performing algorithms in terms of accu-
racy, classification speed and tolerance to parity prob-
lems. These algorithms, however, are lacking in terms
of speed of learning, danger of overfitting and model pa-
rameter handling where Näıve Bayes and kNN are the
top contenders. After analysing all of the results more
carefully, one may argue that SVM clearly outperforms
NN. This being said, one will find that NN and SVM are
the most used supervised learning methods due to their
simple “black box” functionality and so make good can-
didates to compare against. This work will not be con-
cerned with such analyses but will instead propose a new
supervised binary classification method. The method
will be based in the resolution of a mathematical model
through techniques from calculus of variations and func-
tional analysis. Employment of these techniques allows
us to exploit the underlying mathematical theory and
properties from each of these fields. Even more, by uti-
lizing these techniques we may obtain meaningful con-
ditions in the continuous sense rather than performing
optimization discretely. Comparing the performance of
the model with SVM and NN we will determine if the
new method is competitive or not.

The structure of this work is as follows, the section
“A Variational Approach for Supervised Learning” will
consist in giving the formal problem statement. We will
discuss some of the characteristics of this problem and
will proceed to give a solution. Furthermore, we will
present choices of loss and regularization functions to
generate a new model from our solution. Next, we will
present “The Completed Model” in the section by the
same name and discuss its training method. Moving
on, we evaluate the model and conduct analyses on the
results in the sections “Evaluation Methodology” and
“Results and Analysis”. Lastly, we shall finalize this
work in the section “Conclusion”.

A Variational Approach for Super-
vised Learning

The Problem

The supervised learning problem may be characterized
as follows. Given a training set of N observations

T = {(x1, y1), . . . , (xN , yN ) | xi ∈ Ω, yi ∈ Y},

we would like to find a function u = u(x) defined by
u : Ω → Y. In order to find a suitable function u it
is necessary to suggest a suitable model which best de-
scribes the problem. The most widely used framework to
solve the supervised learning problem is the minimiza-
tion of the sum of a loss function L(u, y) with an added
regularization term S(u):

min
u
λS(u) +

N∑
i=1

L(u(xi), yi).

For the continuous case, however, we have:

min
u
λS(u) +

∫
Ω

L(u(xi), yi). (1)

The idea behind the model is to “punish” incorrect pre-
dictions using the loss function while the regularizer
term allows us to “control” or “regulate” the variable
u = u(x). A regularization term is typically used to
solve ill-posed problems or prevent overfitting. Thus, the
regularization term should only depend on the variable
being regularized; in our case u. We may further special-
ize S(u) to our needs. Opting to punish the complexity
of u, we might attempt to “measure” the complexity and
subsequently punishing it. Thereupon we let R(u) > 0
be a Lebesgue integrable function which measures the
complexity of u. The exact definition of R is left until
a later section. This being said, we substitute back into
Equation 1 to obtain:

min
u

∫
Ω

[
L(u, y) + λR(u)

]
dx. (2)

This last equation will be our main interest for the re-
mainder of this work.

One way to interpret Equation 2 is to notice that the
empirical risk of choosing u among a space of hypothe-
sis functions H is defined as the expectation of the loss
function L:

E
[
L(u, y)

]
=

∫
Ω

L(u, y)dx

Thus, if we wanted to minimize the empirical risk,
it would amount to solving the following minimization
problem:
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u∗ = arg min
u∈H

E
[
L(u, y)

]
(3)

= arg min
u∈H

∫
Ω

L(u, y)dx, (4)

where u∗ is the minimizer of the empirical risk. There-
fore, it is finally clear that we will be minimizing the
regularized empirical risk for a choice of u. Although
Equation 3 is usually minimized through probabilistic
and statistical methods, we will employ concepts from
functional analysis and calculus of variations to find a
minimization condition. The condition may then be
solved numerically to obtain u∗.

The Solution

Akin to differential calculus, we aim to “differentiate”
the expression in Equation 2 with respect to u. Unfor-
tunately, the usual definition of a “derivative” is insuf-
ficient for our purpose. Instead, we recall from func-
tional analysis that if we find the functional derivative
and equate to zero

δF

δu(x)
= 0

we obtain the optimality condition. Solving this con-
dition numerically will give us the minimizer u∗ of the
functional F [u]. Before deriving the optimality condi-
tion, it is necessary to make the definition of our model
more precise. Let f be a function of the form:

f(x,u(x),∇u(x)) =

L(x, u(x))) + λR(x, u(x),∇u(x)) ,

with y fixed s.t. L(u) = L(u, y). Furthermore, let F [u]
be the functional depending on u s.t.:

F [u] =

∫
Ω

f(x, u(x),∇u(x))dx .

Then, the functional derivative with respect to u is given
by the PDE Euler-Lagrange Equation:

δF

δu(x)
=
∂f

∂u
−∇ · ∂f

∂∇u
(5)

=
[∂L
∂u

+ λ
∂R

∂u

]
−∇ ·

[ ∂L
∂∇u

+ λ
∂R

∂∇u

]
(6)

=
dL

du
+ λ

dR

du
− λ∇ · ∂R

∂∇u
(7)

=
dL

du
+ λ(

dR

du
−∇ · ∂R

∂∇u
), (8)

where u = u(x) and f = f(x, u,∇u). The second line
is obtained by substitution. The third line is obtained
by remembering that L does not explicitly depend on

∇u and thus it must be zero. The fourth line is the
factorization of λ. After equating to zero, our original
problem is then reduced to solving the following PDE
Euler-Lagrange equation for particular choices of L and
R:

dL

du
+ λ(

dR

du
−∇ · ∂R

∂∇u
) = 0 . (9)

Radial Basis Function Approximation

In order to approximate the function u, it is required we
specify what kind of form it takes. Radial basis func-
tion (RBF) approximation relies on the idea that u(x)
and can be expressed as a weighted sum of radial ba-
sis functions {φi(x)}, where the weights are the fixed
parameter vector w. In particular, the Gaussian RBF
kernel is probably the most well known and the most
widely used. For this reason only, it shall be our choice
all along this work. Thus, bringing the previous ideas
together, we write

u(x) =

N∑
i=1

wiφ(xi),

where {φi(x)} will be a set of Gaussian RBF kernels
given by

φi(x) = e−c||x−xi||2

Maintaining the notation we have been using
throughout this work, we say that the {xi} are the ob-
servations of the input variable X. In addition, c is a
positive constant that we are free to choose, while || · ||
is the Euclidean norm. We will call c the fitting degree
of our model. As a small note, notice that by using our
approximation of u(x), we are setting the centers of the
RBFs as the observations. Intuitively, this will allow our
model to make predictions by calculating the Euclidean
distance between a point of which the class is known,
and a new input which its class is unknown while as-
signing a “weight” to each point. This last step is akin
to saying that some points will be more important than
others when making the predictions.

Cross Entropy

In order to correctly employ a classification context we
must give an appropriate loss function for classification.
To find an appropiate loss, we take a Bernoulli variable
Y ∈ {0, 1}. Our goal is then to predict the target class
y given an input u(x,w), where w is a vector parameter
which u depends on. From the previous section, we see
that this is actually the case. To derive the loss func-
tion, we choose to maximize the likelihood that, given
parameters w, the model results in a prediction of the
correct class for each input sample with the likelihood
being a function of the parameters. In fact it is the min-
imization of the cross-entropy [6] (also called negative
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log-likelihood) that effectively maximizes the likelihood.
This function is given by:

L(σ(u), y) = −y lnσ(u)− (1− y) ln
(
1− σ(u)

)
.

To use this function in our framework it is necessary to
calculate its derivative with respect to u. Namely

dL

du
= σ(u)− y .

Notes. This function is convex and so coupled with
a convex regularization term our model will admit a
unique solution u∗. Our prediction rule is g(σ(u)) where
g ∈ {0, 1} as opposed to σ ∈ (0, 1). We outline that
σ gives us the probability of classifying an input u as
y = 1. To effectively “binarize” the output one must
define g, for example, as g = 1 on σ(u) ≥ 0.5 and g = 0
on σ(u) < 0.5.

Laplacian Regularization −∆u

Now that we have derived an appropriate loss function
for binary classification, we are tasked with the choice
of a regularizer term. Much work has been done in the
past to find a good regularizer and although there is no
clear, best choice we can make do with most suggestions
in the literature. In the recent work on this area, Belkin
et al. have proposed the square of the gradient vector
norm, so that:

S(u) =
1

2

∫
Ω

||∇u||2dx , (10)

for which R(u,∇u) = ||∇u||2. The expression of the
term depending on R in Equation 9 is calculated for
this choice of R :

d

du

||∇u||2

2
−∇ · ∂

∂∇u
||∇u||2

2
= −∆u. (11)

One way to interpret this choice of regularization term
is to regard u(x) as a scalar field and to notice that tak-
ing the norm of a vector is interpreted as calculating its
magnitude. Thus, this choice minimizes the slope of the
gradient points in the direction of the greatest rate of
increase. Therefore, it will prevent sharp edges and, in
part, will ensure that u∗ be smooth and reduce overfit-
ting.

Notes. Equation 10 is convex and thus there is a
unique solution u∗ to our problem. This equation is also
known as the Dirichlet Energy functional [7], and so we
can have a more precise interpretation of minimizing this
functional. Chiefly, the Dirichlet Energy measures how
variable a function is and it is a quadratic functional on
the Sobolev space W k,2. In general, this regularization
term has been tried with some favourable results by Lin
et al. [8] in the regression context.

The Completed Model

Without further ado, we shall give the whole model along
with its solution. Let u : Ω ⊂ Rm → R be the function
we want to fit and let y ∈ {0, 1} be the target values.
Let σ(u) be the probability that an input u = u(x) is
classified as y = 1. Let F [u] be a functional depending
on u, defined by

F [u] =

∫
Ω

−y lnσ(u)− (1−y) ln
(
1−σ(u)

)
+ ||∇u||2 dx.

Then the condition of optimality is the elliptic PDE

σ(u)− y −∆u = 0 .

Here, our equation takes on a more special interpreta-
tion. Isolating the variable y on the left hand side, we
see that actual form that y = y(x) must take is that
of the right hand side. Therefore, this expression is the
function used to predict the outputs.

y(x) = σ(u(x))−∆u(x) .

In order to solve the problem numerically, we can isolate
the variable y to see that we have reduced the original
problem to another fitting problem that can be solved
numerically. Recalling that u = u(x) depends on a fixed
weight vector w and can be expressed by the sum of the
set of RBFs {φi(x)}, it is required to find the weight
vector w∗ which appropriately satisfies Equation 12.

σ(u)−∆u︸ ︷︷ ︸
Function to fit

= y︸︷︷︸
Targets

(12)

Since we have N datum pairs (xi, yi) we may attempt
to utilize these in order to find the function, or equiva-
lently the weights w∗, which satisfy the equality above.
It is then that we may write the problem of finding
w∗ as a least squares problem (LSQP). Let g(xi,w) =
σ(u(xi,w))−∆u(xi,w), then the LSQP is:

w∗ = arg min
w

N∑
i=1

[
yi + ∆u(xi,w)− σ(u(xi,w))

]2
(13)

= arg min
w

N∑
i=1

[
yi − g(xi,w)

]2
(14)

= arg min
w

N∑
i=1

[
yi − gi(w)

]2
(15)

= arg min
w

S(w), (16)

Note we have defined gi(w) = g(xi,w) to obtain the
third step. The problem is therefore reduce to solving
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this problem. In our particular case, we have chosen
to solve this problem via Levenberg-Marquardt [9]; a
widely used numerical algorithm used to solve non-linear
least squares problems. A detailed description of this al-
gorithm can be found in the book Numerical Recipes in
C [10]. Using this algorithm will mean that our model
will depend on yet another parameter; η is a dampen-
ing parameter which will allow to solve a “dampened”
version of the problem above.

Evaluation Methodology

We tested our model against 9 binary datasets. For each
dataset we calculated two metrics:

• Accuracy

• Area under the ROC curve (AUC) [11]

Both of the metrics are calculated over the test set in a
5-fold cross validation scheme. There has been minimal
preprocessing of the datasets. That is, we have centered
to 0 mean and unit variance the features of each dataset.
Namely, we have standarized the dataset. Notably, no
dimensionality reduction has been applied.

When training the models, it is necessary to specify
the parameters in which they depend on. For our model
(LR) we have two choose a parameter triplet (c, λ, η); c is
the fitting degree, λ is the regularization parameter and
η is a dampening parameter. For a RBF-kernel SVM,
we choose the parameter pair (C, γ); C is the penalty
parameter of the error term while γ is the kernel co-
efficient. Lastly, we assume that NN is a multi-layer
perceptron with one hidden layer of 100 nodes which de-
pends on a regularization term α. Both SVM and NN
are implementations of the Python library sklearn [12].
The parameters for each of our models were chosen by
the following methodology:

LR. The parameter triplet (c, λ, η) is searched on a
grid:

• c is searched on the interval (0, 5) with step = ln 2.

• λ is searched on the interval [0, 10] with step = 1.

• η is fixed to η = 1 for each and every dataset.

The value of η = 1 was found empirically to work well
with almost any value of λ and c. To threshold the out-
puts of LR into values of the set {0, 1} we will use the
following classification rule:

g(x) =


0 σ(u(x))−∆u(x) ≤ 1

2

1 σ(u(x))−∆u(x) >
1

2

SVM. The parameter pair (C, γ) is searched on a grid:

• C is searched on the interval (0, 5) with step = ln 2.

• γ is fixed to γ = 1/m, where m is the number of
features of the dataset.

Originally γ was searched on the interval [0, 10] with
step = 1. It was soon found empirically, that fixing γ to
γ = 1/m resulted in better performance.

NN. The parameter α was fixed to α = 0.001.

Results and Analysis

This section presents the results in Tables 1 through 3.
To understand more easily the performance of the meth-
ods, we have arranged the results into various tables. In
terms of accuracy, LR outperformed SVM and NN on 3
datasets. In detail, LR outperformed NN on 4 datasets
and outperformed SVM on 2, tying on the Breast Can-
cer dataset. To fully grasp how much better or worse
our method has performed we calculated the absolute
value of the residual between LR and the top performer
for each dataset. On average we see that our method
was down by 0.9567 %. Although not shown in Table 1,
the average distance from the top performer for SVM is
0.5229 % and for NN it is 0.8975 %. These scores lend to
the interpretation of “which method got closer to the real
solution”. Looking at who got the top score we might
say that the top performer was the best method suited
for that particular type of dataset. It is of interest then
to evaluate a method which in average should perform
well for most types of datasets. Interpreting the results,
we can confidently say that SVM is the best method,
while NN is second and LR comes a close third
in terms of accuracy.

The AUC score may also be used to further deter-
mine the performance of a classifier [13]. Proceeding in a
similar manner as before, we calculate the average resid-
ual between the 1st place and LR. We find that LR is on
average down from 0.0126 units from the top performer
for each dataset. The same is calculated for SVM and

NN; respectively 0.0088 and 0.0161. Surprisingly, even
though NN outperformed SVM and LR on 4 different
datasets while LR only outperformed the others on one,
on average LR will perform better than NN. Un-
surprisingly, SVM will still perform better than NN and
LR.
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Table 1: The accuracy (%) of each method is outlined in this table. The second to last column indicates which
ranking (1st, 2nd or 3rd) LR obtained; higher is better. On the other hand, the last column indicates the absolute
value of the residual between LR and the 1st place. In bold, the best accuracy.

Data Dim N LR SVM NN Place Dist. from 1st

Australian 14 690 86.6667 86.8116 87.8261 3rd 1.1594
Blood Transfusion 4 748 78.2246 78.2237 77.2859 1st 0.0

Breast Cancer 30 569 97.7146 98.7425 98.2673 3rd 1.0279
Bupa 6 345 72.4638 72.4638 71.0145 1st 0.0

German 24 1000 76.0000 76.6000 78.3000 3rd 2.3
Haberman 3 306 73.5431 73.8710 74.5267 3rd 0.9836

Heart 13 270 82.2222 84.8741 84.0148 3rd 2.6519
Sonar 60 208 88.4321 88.9199 87.4681 2nd 0.4878

Vertebral Column 6 310 86.7742 85.4839 83.8710 1st 0.0

Average distance from 1st: 0.9567

Table 2: The area under the ROC curve has been calculated for each method over each dataset Also, we have added
a grade next to the scores to see how they perform against each other more easily; A being excellent performance,
while F is catalogued as a fail. Likewise (Table 1), the second to last column indicates which ranking (1st, 2nd or
3rd) LR obtained; higher is better. On the other hand, the last column indicates the absolute value of the residual
between LR and the 1st place. In bold, the best AUC.

Data LR SVM NN Place Dist. from 1st

Australian 0.8643 (B) 0.8701(B) 0.8777 (B) 3rd 0.0134
Blood Transfusion 0.5844 (F) 0.6144 (D) 0.5502 (F) 2nd 0.03

Breast Cancer 0.9729 (A) 0.9800 (A) 0.9858 (A) 3rd 0.0129
Bupa 0.7024 (C) 0.7059 (C) 0.6866 (D) 2nd 0.0035

German 0.6821 (D) 0.6920 (D) 0.7058 (C) 3rd 0.0237
Haberman 0.5560 (F) 0.5559 (F) 0.5463 (F) 1st 0.0

Heart 0.8180 (B) 0.8452 (B) 0.8322 (B) 3rd 0.0142
Sonar 0.8857 (B) 0.8906 (B) 0.8812 (B) 2nd 0.0049

Vertebral Column 0.8292 (B) 0.8404 (B) 0.7978 (C) 2nd 0.0112

Average distance from 1st: 0.0126

Even though our analysis has been very exact until
now, it is time to present a more intuitive analysis based
on the AUC. Furthermore, this analysis is more robust
than the previous. The analysis consists in assigning a
“grade” to a classifier by specifying the following grading
scheme:

Grade =



Excellent (A) 0.9 ≤ AUC ≤ 1

Good (B) 0.8 ≤ AUC < 0.9

Fair (C) 0.7 ≤ AUC < 0.8

Poor (D) 0.6 ≤ AUC < 0.7

Fail (F ) 0.5 ≤ AUC < 0.6

The “robustness” comes from the fact that we are par-
tioning discretely the interval [0, 1] and assigning each a
grade. Small variations within the sub-intervals will be
neglected. Looking at Table 2 we see that each of the

AUC scores has a letter assigned to it. This is inter-
preted as the grade which the method received on that
particular dataset. In order to summarize the grades, we
arrange the number of times a method received a partic-
ular grade in Table 3. Simply by looking at Tables 2 and
3 we can get the sense that all of the models performed
similarly. In order to obtain a quantitative measure, we
may assign each grade a value. Namely, A = 1, B = 2,
. . ., F = 5. Obtaining the weighted total of the grades
will then let us asses directly which method is better by
looking at the lowest total. The results are presented
in Table 3. Immediately, we see that SVM once again
obtained the best score. This time, however, LR came a
close second with only a 1 point difference. On the con-
trary NN was down by 4 points from SVM and 3 points
from LR. Summarizing, LR outperforms NN again
while SVM remains overall the best method.
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Table 3: The columns LR, SVM and NN indicate the numbers of times each of the methods got the grade on the
leftmost column. Letting A = 1, B = 2, C = 3, D = 4, F = 5, we can calculate a weighted final grade for our
classifiers and see how each of them performed. Clearly a lower grade is better. The weighted grade is just the
weighted total of the grades each of these methods obtained.

Grade LR SVM NN

A 1 1 1
B 4 4 3
C 1 1 2
D 1 2 1
F 2 1 2

Weighted grade (lower is better): 26 25 29

Conclusion

Even though supervised learning has had tremendous
advances in the last few years, it remains clear that a
lot of work has yet to be done. As part of our contribu-
tion to the field, we have designed and implemented a
new variational model for binary classification. Opting
to attack the supervised learning problem by functional
and variational means, we arrived at the LR model and
gave each of its components interpretations. Moreover
we used the Levenberg-Marquardt method to solve the
optimality condition which in essence was equivalent to
“training the model”. We outlined our evaluation cri-
teria and methodology so that we could compare how
well our method stood against two of the most utilized
methods; NN and SVM. From the results obtained, we
conducted three different analyses to quantify the per-
formance of each model. The accuracy results obtained,
clearly indicated that SVM was the superior method
amongst the three, and so the focus shifted to the com-

parison between NN and LR. It was found that NN out-
performed LR by a small margin. The second analysis
showed that LR outperformed NN while SVM came out
on top once again. Finally, we conducted a more robust
analysis which permitted us to ignore small variations
in the scores. This last analysis further showed that LR
clearly outperformed NN. Moreover it showed that LR
was not far from SVM’s performance. We speculate that
this is due to the heavy optimizations in the implemen-
tation of SVM which permit it to find the minimum in
a faster manner.

Without a doubt, the variational approach looks
to be very promising and is to be explored in future
work. Namely, we will concentrate in deriving expres-
sions for higher order derivatives and better formalizing
the problem at hand in order to derive more interest-
ing properties. The implementations for the LR model,
benchmarking scripts and datasets may all be found at
https://github.com/carlosb/thesis.
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