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Resumen

El método de interpolacién cubica por splines, el método de Runge-Kutta y el método de Newton-Raphson se
extienden a su versién dual (desarrollados en el contexto de los nimeros duales). Esta extensién permite el cdlculo
de derivadas para composiciones de funciones que no necesariamente estan en una forma cerrada. El codigo de
los algorithmos se han escrito en Matlab y se presentan algunos ejemplos. Entre ellos, se usa la versién dual del
método de Newton—Raphson para obtener la derivada del dngulo de salida en el mecanismo espacial RRRCR; la
version dual del método normal de interpolacion cibica por splines se usa para obtener la difusividad térmica por
técnicas fototérmicas y usamos la versién dual del método de Runge-Kutta para obtener derivadas de funciones
que dependen de las soluciones de la ecuaciéon de Duffing.

Palabras Clave: Numeros duales, diferenciacion, Runge-Kutta, Newton—Raphson, splines ctibicos.

Dual Numbers for Algorithmic Differentiation

Abstract

The cubic spline interpolation method, the Runge-Kutta method, and the Newton—Raphson method are extended
to dual versions (developed in the context of dual numbers). This extension allows the calculation of the derivatives
of complicated compositions of functions which are not necessarily defined by a closed form expression. The code
for the algorithms has been written in Matlab and some examples are presented. Among them, we use the dual
Newton—Raphson method to obtain the derivatives of the output angle in the RRRCR spatial mechanism; we use the
dual normal cubic spline interpolation algorithm to obtain the thermal diffusivity using photothermal techniques;
and we use the dual Runge-Kutta method to obtain the derivatives of functions depending on the solution of the
Duffing equation.

Keywords: Dual numbers, Differentiation, Runge-Kutta algorithm, Newton—Raphson algorithm Cubic spline
interpolation.

1 Introduction an integer greater than or equal to two are usually ne-

glected. It turns out that this reasoning is correct. This

Analogous to a complex number z = a + ib where a
and b are real numbers and 2 = —1, a dual number
is defined as 7 = a + €b with a and b real numbers
and €2 = 0. Such numbers were introduced by Clifford
who also developed their algebra in the late nineteenth
century [1].

The fact that €2 = 0 suggests that the dual numbers
can be used to differentiate functions, since in analogy
to an infinitesimal dx, quantities of order dx™ with n
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can be easily proved for polynomials and then via the
Taylor Series, generalized for any analytic function. So,
by extending a real function to a dual function one can
numerically obtain its derivatives. Nonetheless, most of
the applications of dual numbers are in the area of me-
chanics (see for example [2] where some contributions
to mechanics based on dual numbers are presented) and
only relatively recently have they been used to obtain
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the derivatives of functions [3-6]. Moreover, there are no
papers addressing the dualization® of algorithms such as
the Newton—Raphson algorithm, the Runge-Kutta al-
gorithm, or the cubic spline interpolation method. The
present paper shows that a dualization of these algo-
rithms allows the numerical calculation of the deriva-
tives of complicated compositions of functions which fre-
quently arise in science and engineering applications.

The problem of numerical differentiation has been
addressed by many researchers. A complete review of
the literature on this topic is beyond the scope of this
paper. Nevertheless we want to cite some works which
represent most of the techniques used to obtain deriva-
tives numerically [5-22].

In the case when the derivatives of a set of data
are required, two excellent approaches are presented
in [13,22]. However, in some applications, one deals with
derivatives of the composition of functions defined by an
expression rather than an explicit function or set of data.
For example, one could be interested in calculating the
derivatives of the composition of a function with another
that is the solution of some differential equation, or in
calculating the derivatives of a function which depends
on another function which is the spline interpolation of
some data. In such cases, the automatic differentiation
methods (AD) [6,9,19,23] and in particular AD by using
dual numbers are especially suited for calculating such
derivatives.

As illustrative examples, the thermal diffusivity for
solids is obtained by making a dual cubic spline interpo-
lation of the amplitude of the photothermal radiometry
signal [24]. The derivatives of functions depending on
the solution of the Duffing equation [25-27] are calcu-
lated using the dual Runge-Kutta method. And the
dual Newton—Raphson algorithm is used to obtain the
derivatives of the output angle in the RRRCR spatial
mechanism [28]. The Matlab code of the elemental dual
functions as well as the dual version for the mentioned
algorithms are provided as additional material to this
article, which is available at [29].

2 Methodology

2.1 Derivatives using dual numbers

How dual numbers can be used for calculating numer-
ical derivatives can be seen in [30,31]. Here we briefly
review the essential ideas, bearing in mind a numerical
implementation.

Let f : R — R be an analytic function. Expand-
ing this function in a Taylor Series and evaluating at
Z = x + € (note that we have taken the dual part to be

1) we get

0
flx+e) = f(@) + ['(@)e + O, (1)

As we can see, f(z) + f'(x)e is a dual number, so we
associate the dual function

f(@) = f(2) + f'(2)e (2)

to it. As in the case of the complex numbers, there is an
isomorphism between the dual numbers and R?, thus a
dual number can be written as

7 = {a, b}. (3)

From now on we will use the notation given by Eq. (3),
thus Eq. (2) will be written as

f(@) ={fo, 1},

where fo = f(z) and f1 = f'(x).
The next step is to dualize the composition of f(z)
with another function g(z). From the chain rule, we get

f(ﬁ) = {fo(90), f1(g0)g1}- (5)

For instance, if h(xz) = f(g(u(x))), the dual component
of h(z) = f(g(a(&))) will be h/(z). That is the power of
the dual method of obtaining derivatives. We only need
to implement the chain rule once. This makes the dual
number method of obtaining derivatives an AD method
(forward mode of AD).

The generalization to second derivatives is straight-
forward. To this end we define a new dual number

(4)

f:a+b€1+062,

7 = {a,b,c}, (6)

with a, b and ¢ being real numbers and €¢; and €5 having
the following multiplication table

‘ 1 €1 €9
1 1 €1 €9
€1 €1 €2 0
€2 €2 0 0 (7)

Now, evaluating the Taylor expansion for f(z) in
T = x + €1 we have,

F@) = f@) + f e + g @S ©)
F@) = f@) + f@e + g e (9)

These expressions are of the form of Eq. (6) so we can
write

f@) = (@), @, @y o)

The fact that the third component is a half of the
second derivative does not matter. We can choose

F@) = {f(), f'(x), f"(x)} (11)

1From now on the term dualization will refer to extending a function or algorithm to the context of dual numbers.
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as our definition for this new dual function (in fact, by
choosing €2 = 2¢, the factor 1/2 disappears). Also the
inappropriate name, new dual function, can be changed
to dual function; leaving to the context of the problem
(number of components of f) if we are talking about a
simple dual function or of an extended dual function of
3 components. Clearly Eq. (10) can be generalized to
obtain higher order derivatives. For instance, to obtain

derivatives until order n, define ¢ = 1, €1, €a,..., €,
having the multiplication table
0 ifi+j5>n,
€ €5 = (12)
€i4+; otherwise,

with ¢, 7 =0,1,...,n.

It is also interesting to prove Egs. (8, 9, 10) from a
matrix algebra point of view. To this end we define the
following matrices having the multiplication table (7),

1 0 0 0 1 0
I=(o0o10]), e=[00 1],
0 0 1 0 0 O
0 0 1
e2=[0 00 (13)
0 0 O
Now, since
X=xI+¢€ (14)
is in its Jordan canonical form, we will have [32]
f@) f(x) f(x)/2!
f[X)={ 0 fl@ [f@ ), (15
0 0 f(x)
FX) = f@) T+ f@)er+ g " (@)es (16)

Thus, the derivatives of f are determined by calculat-
ing the matrix function f(X). This matrix function
can be calculated by using the Cauchy integral formula
for operator-value functions (see for example Sec. 16.8
of [33]).

A generalization of Egs. (15, 16) to obtain higher
order derivatives, can be done by calculating f(X) with

X = SCI(n+1)><(n+1) + €1;(n4+1)x(n+1)> (17)

[ea;(nﬂ)x(nﬂ)]i’j = d; j—a; being d; ; the Kronecker’s

delta function, and a =1,2,...,n.
From Eq. (10), the analog of & = {z,1} will be
Z = {x,1,0} and the analog of Eq. (4) will be

F@) = {fo. fr. f2},

where fo = f(x), f1 = f'(z) and fo = f”(x). Similarly,
we will have

£(3) = {fo(g0): F1(90)91 f2(90) g% + f1(90)g2},

(18)

(19)
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for the composition of two dual functions.

Eq. (19), is of central importance in dualizing a func-
tion or algorithm. Notice that, unlike the finite differ-
ence methods, the use of Eq. (19) to obtain derivatives
does not have the problems of truncation or cancellation
erTors.

2.2 Matlab implementation

In order to facilitate the use of the dual number given
by Eq. (6), it is convenient to introduce a class for this
kind of number. In the Matlab programming language,
this can be done as:

classdef dual
%Class for dual numbers
properties
£0;%function
f1;%first derivative
£2;%second derivative
end

methods
function obj = dual(gl,gl,g2)

if (nargin “= 0)
if (nargin == 1&&isnumeric(g0))
gl = zeros(size(g0));
g2 = gl;
elseif (nargin == 1&&isa(g0,’dual’))
obj = g0;
return
end
obj.f0 = g0;
obj.fl = gi;
obj.f2 = g2;
end
end
end
end

Now, the dual number of Eq. (6) can be written as 7 =
dual(a,b,c). This class as well as many other over-
loaded functions are included in the additional material
to this article.

2.3 Dualization of algorithms
2.3.1 Dual Newton—Raphson algorithm

Let us suppose that we are given equation

F(u(z),z) =0 (20)
and that u'(zg) is required. In the case when a closed
form expression for u(x) can be obtained, the derivatives
can be calculated by writing u(z) in its dual form @(z).
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If there is no closed form expression for u(z), applying
the chain rule yields

1 or
OF /0u(u(xo), zo) Ox

U (zg) = (u(xo), o). (21)
Assuming that there are closed form expressions for
OF/0x and OF/0u, the derivative u'(zg) can be calcu-
lated by solving numerically Eq. (20) and substitut-
ing u(zg) into Eq. (21). If 0F/0x and OF/0u can-
not be obtained in closed form, its numerical values can
be obtained using AD. Nevertheless, by coding the dual
version of some numerical solution method to solve Eq.
(20), we will obtain u(xg) and automatically its deriva-
tives. In the present paper, we dualize the Newton—
Raphson method [34, 35].

Let f(q) be a real function of a real variable. The
Newton-Raphson method allows finding a solution of
the equation f(q) = 0. Starting to look for a solution
in qo, the algorithm determines an approximate solution
as?

_ flq)
= f'(qo0)

f(Qn)
f(gn)

In order to obtain /(o) from Eq. (20) we proceed as
follows: Write F for the dual version of the function F'.
Define the dual starting point wy = {uo,0,0}. Since we
need F’(u), we define £y = {x0,0,0} and @ = {uop, 1,0},
then from f; = F(ii, %) we obtain the first and sec-
ond derivatives of F' with respect to u. This is an extra
bonus of the method: we do not need to worry about
the derivative of F'. In practice, this is an issue, and the
derivative must be provided by hand. Finally, write Eq.
(22) in its dual form, keeping in mind that since we want
/() we need to evaluate F in 1y and & = {x0,1,0}.

Putting 4y = u0d, £y = x0d, and F= fd; the essen-
tial part of the method is

gn+1 = qn — (22)

x0d = dual(x0);

u0d = dual(u0);

for k = 1:n
fx = fd(u0d, dual(x0,1,0));
fu = fd(dual(u0d.f0,1,0), x0d);
u0d = u0d - fx/(fu.f1);

end

This algorithm will produce @(x). Using Eq. (19), we
can construct the general dual function for u: a(g).
The complete algorithm is coded in the function NR_-
dual of the additional material. We also coded Halley’s

method [37], so the user can choose between the simple
Newton—Raphson method or Halley’s method. Some ex-
amples are presented in Section 3.

2.3.2 Dual cubic spline interpolation

Let P: A C R — B C R be the function representing
a cubic spline interpolation and let f be a real func-
tion such that f(P(z),x) is defined. The problem is
to find f/(P(z),z) with 2 € A. We solve this problem
by writing the dual version of the natural cubic spline
interpolation.

Natural cubic splines

Suppose that we have n data points {(21,91), ..., (Tn,yn)},
n > 1. A cubic spline is a spline constructed of piecewise
third-order polynomials

Yi(t) = a; +bit+cit> +dit>; t€[0,1], i=1,...

which pass through this set of points.

In determining the coefficient of the ith piece of the
spline, a linear system of 4(n — 1) — 2 equations and
4(n — 1) unknowns will appear [38]. Two more equa-
tion can be obtained by demanding that Y (0) = 0 and
Y”(1) = 0. This yields the so called natural cubic spline
interpolation. With this, the coefficients of Y; are given
by

ai = Yi
by =D;
¢i = 3(Yi+1 —yi) —2D; — Diya
di = 2(Yi — yir1) + Di + Dig1 (24)

where the Dy numbers are determined by solving the
symmetric tridiagonal system:
TD =R (25)

with

— N
— s =
=

(26)

,_A
— s
[N

Dn72
Dn—l
Dy

2The convergence of the Newton-Raphson method is not a trivial subject. In some cases, a small variation of gy causes a conver-
gence/divergence of the method. For a study of the convergence of the method, we refer the reader to [36].
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Y2 — 1
Ys— W
Y4 — Y2
R =3 : (28)
Yn—1 =~ Yn-3
Yn — Yn—2
Yn — Yn—1

The inversion of an n X n tridiagonal matrix can be done
by an O(n) algorithm [34], and in general it is this kind
of algorithm which is used in order to find the inverse of
the matrix T in Eq. (26). However, as we will show, an
analytical formula for the inverse of T can be obtained.

Let us consider the n xn nonsingular tridiagonal ma-
trix

ar b
cr ay by
M = C2
bnfl
Cn—1 (79}

The inverse of such a matrix can be written as [39]:

(71)7"+j bi...bj,1 07;,1 ¢j+1/0n if ¢ g],
Ml =
13 1/+ y . . .
(71) JCj...Ci_l 9]'—1 (,252‘4_1/0” if 4 > 7,
(29)
where 6; is obtained by solving the recurrence equation

with #p = 1 and 07 = a;. Then ¢; is obtained by solving
the recurrence equation

¢i = a; Pit1 — bicidiq, fori=n—1,...,1, (31)
with ¢,4+1 =1 and ¢, = a,.

The use of Eq. (29) is not an efficient way to find
the inverse of a tridiagonal matrix. However it can be
used to deduce an analytical formula for the inverse of

the matrix T.
Applying Egs. (29, 30 and 31) to Eq. (26), we get

5 if s #mn,
0s =
o) (502v3) - v 6,
(32)
_ 1+n s _ s 1+n
(2=v3)""" (2+v3) ;(2 V3)® (2+V/3) ifs 41,
¢S =
(48)" (C32v8)-(2-vE)" (342v8) o _
5 if s =1.
(33)
Defining inv as
inv(s, k) = (—=1)*T*0,_1 ¢p11/0n, (34)

writing explicitly ¢x11/60, and carrying out some ele-

0; =a;0;—1 — bji_1¢;—10;—o, fori =2,...,n, (30) mentary algebra, we obtain
J
. _ (_1)S+k 1+ (aT/a)S_l (k+1D)Inaf + (s—=1)Ina t (s+k)Ina+n In(al/a)
inv(s, k) = 2 BT —(alja)" B e +a'e ) (35)
[
with be
ri(t) = {z; + (i1 — i) L, Yi(0)}. (39)

a=2+V3
af =2 -3

B=2vV3+3

gF=2v3-3. (36)

From this, the inverse of the matrix T is

_ inv(s, k) if s <k,
skl =93 . (37)

inv(k,s) if s> k.

Thus the coeflicients D, are given by
Dy=Y T Ry, s=1,....n. (38)

k=1

Now that all the coefficients have been determined,
the parametric equation for the interpolated points will

Eliminating the parameter ¢, the equation for the ith
polynomial of the normal cubic spline will be

Pi(z) =Y; <

r — I

) , X € [T, 41 (40)

Tit1 — Ty

The interpolated points in the whole interval [z1, z,,] are
(41)

Once P(x) has been promoted to a dual function (see
the function NCSplinedual of the aditional material),
the derivatives of an arbitrary function f = f(P(z),z)
for any x € [x1, zp],as well as P'(f(x),x), are calculated
by writing f in its dual form. Some examples are pre-
sented in Section 3.
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2.3.3 Dual Runge—Kutta algorithm

Let us consider the following ordinary differential equa-
tion (ODE)

f//(t) :F(t7f7.f/)7 (42)
with initial conditions f(ty) = fo and f'(t9) = vo. Let
g(t) be a function defined in such a way that f(g(t))
and g(f(t)) are defined. The problem we want to ad-
dress is to find the derivatives of the composition of the
functions f and g.

Dual Runge—Kutta 4th order method

One of the most often used methods for numerically solv-
ing ODEs is the Runge-Kutta Method [34,35,40]. In or-
der to calculate f'(g(t)), f"(9(t)), ¢'(f(t)) and g"(f(t)),
we will dualize the 4th order Runge-Kutta method
(RK4). Putting 2 = f', 1 = f, ui(t,r1,72) = 22,
us(t, x1,x2) = F(t,21,22), the RK4 method produces
29 and 27 and hence f”(¢). From this, the dual ver-
sion of f as a function of the real variable ¢ (see the rk4
function of the additional material) is

F@y= {5, f'@®), 1)}

_ The dual version of f for any dual variable @, namely
f(@), can be constructed following Eq. (19). (See the
rk4dual function of the additional material). Once we
have f(@), the derivatives are calculated from the com-
positions f(§()) and §(f(f))—actually, we can calculate
the derivatives of any function G(f(¢),t). Some exam-
ples are presented in Section 3.

(43)

3 Results

All the examples and required folders are included in the
additional material to this article.

3.1 Dual Newton—Raphson example 1

Suppose that u(x) is defined by the equation f(u,z) =0
where

f(u,z) = cos(ux) —u® + x + sin(u® z).

Let us consider the functions gi(z) = sin(u(x)) + z
and go(z) = wu(sinz + 22). The problem is to find

a’cci —2aci 3 sy (b—

e) —2acicaLcosd+ 2acycaRcosp —c2ca(b—

u(zo), uw'(vo), u”(20), g1(w0), 91(0), 97 (%0), g2(wo),
95(x0), g5(xo), with zg = 0.7. This can be accom-
plished by writing the Newton—Raphson algorithm in its
dual form. Such an algorithm is coded in the function
NR_dual (NRkind,uO,n,fd,gdual). In this function,
NRkind is the kind of method used. NRkind = NR1 is for
the simple Newton-Raphson method and NRkind = NR2
is for Halley’s method, u0 is the dual point where the
method starts to look for a solution, n is the number of
iterations, fd is the equation to solve; in this example
it will be f(i, %), the dual version of f(u,z); gdual is
the dual point where we want to evaluate the functions.
The following script computes the required values.

addpath(’01DualNumberF;02DualAlgs’)

x = 0.7;

u0 = 1.6d0;

xd = dual(x,1,0);
n = 10;

f = @(u,x) cos(u*x) - u™3 + x + sin(u™2*x);

disp([’The function u and its derivatives’
> in x = 0.7 are’])
disp(NR_dual(’NR1’,u0,n,f,xd))

disp([’The function gl and its derivatives’...
> in x = 0.7 are’])
disp(sin(NR_dual (’NR1’ ,u0,n,f,xd)) + xd)

disp([’The function g2 and its derivatives’...
> in x = 0.7 are’])
disp(NR_dual (°’NR1’,u0,n,f,sin(xd) + xd*xd))

Notice the advantages of this method: we can calculate
very complicated derivatives involving u(z) by using the
dual functions. The results are shown in Table 1.

3.2 Dual Newton—Raphson example 2

The example here presented concerns the RRRCR spa-
tial mechanism [28]. Following Eq. (2) of [28] and the
definitions given in the aforementioned reference, the
output angle ¢ as a function of the input angle 6 is given
by the equation

e)>+2cic3Lsy(b—e)cosh+

2¢cicaLsy (b — €)sind — 2¢y Rsy (b — €) sing—2Rsy (b — €) cosgp + (b—e)? — deal® + cFci L+

ciciR% cos® ¢ — 2cica LRsinfsing — 3 R (1 —
2¢1 R?s159 sin ¢ cos ¢ + R% cos® ¢ = 0.

2 sin® qb) —2¢1 chR cos B cos ¢ — 2c1co L RS89 sin 0 cos o+

(44)
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Table 1: Results for the Newton—Raphson example 1.

u(zo) /(o)  "ulwo) gi(wo) gi(zo) gi(wo)  ga(wo)  gh(wo)  g5(wo)
1.3085 0.1163 —0.9337 1.6658 1.0301 —0.2551 1.2963 —0.2556 —1.1425

Table 2: Parameters used for the Newton—Raphson example 2.

Parameter

Value

L
l
a
R
S1
52
b
e

0.
0.
0.
0.
0.
0.

3933578023
4174323687
9526245468
4484604992
6298138891
2506389576

2.0

1.0

Now, if one is interested in calculating the veloci-
ties and accelerations, complicated functions involving
¢ and ¢'(0) will appear. As an example, let us consider
the function f(z) = 2 sin® z and the point 2o = 2.0. The
problem is to caleulate f(6(z0)), f(6(z0)), f(6(x0)),
o(f(xz0)), ¢'(f(x0)) and ¢"(f(xo)) for the same set of

parameters given in [28], and reproduced in Table 2 for
clarity.

Analogously to the example in Section 3.1, we obtain
the results shown in Table 3. Notice that the solution of
Eq. (44) for § = 2 is not unique. The values in Table 3
are for ¢ = 2.1351.

3.3 Dual cubic spline interpolation ex-
ample 1

Let y(x) be the normal cubic spline interpolation for the
data shown in Table 4.

The values y(zo), ' (z0), f(zo)s f'(xo), g(zo) and
g'(z0) with f(z) = asin’(y(z)), g(z) = y(rsin’z)
and xg 1.75 can be calculated by dualizing the
normal cubic spline interpolation method. This has
been done in the function NCSplinedual(A,xd). In
such a function, A is the matrix containing the points
for which the spline will be constructed (in this case,
they would be the points of Table 4) and xd is
the dual point where we want to evaluate, in this
case xd=dual(1.75,1,0). For instance the first (sec-
ond) component of NCSplinedual (A,xd) will be y(z)
(¥ (z0)).

The derivatives f'(zg) and ¢'(x¢), respectively, are
obtained by taking component £1 of

xd*sin(NCSplinedual (A,xd)) "2

7

(

and
NCSplinedual (A, xd*sin(xd)"2)

The results are given in Table 5.

3.4 Dual cubic spline interpolation ex-
ample 2

This example concerns the determination of the thermal
properties of a solid using photothermal radiometry [24].
In particular, we are interested in determining the ther-
mal diffusivity from the experimental data of Fig. 4
from [24]. The experimental data can be extracted us-
ing EasyNData [41]. Assuming that such data are stored
in the matrix pts, the dual cubic spline interpolation is
done by NCSplinedual(pts,x). Now, according to [24],
the thermal diffusivity can be calculated from

_64L2f,

9r ' (45)

A
where L, = 522 um is the thickness of the studied sam-
ple and f; is the frequency for which the derivative of
the amplitude of the radiometry signal is zero. The fre-
quency f, can be calculated using the Newton-Raphson
algorithm. To this end we define the dual function
fej2(x) containing the first and second derivatives of
the spline. The essential part of the code is

function fr = fej2(x)

auxresult = NCSplinedual(pts,x);
fr = dual(auxresult.fl,auxresult.f2,0);



F. Pefiunuri et al. / Ingenieria 23—-3 (2019) 71-81

Table 3: Results for the Newton—Raphson example 2.

f(@(xo))  ['(d(wo))  ["(¢(w0))  ¢(f(x0))  ¢'(f(x0)) ¢"(f(w0))

1.4279 -1.7693 -1.2856 1.7817 -1.6171 -3.5137

Table 4: Points used for the dual cubic spline interpolation example 1.

€ Y
1. 0
1.25 0.22314355

1.5 0.40546511

1.75

0.55961579

2 0.69314718

2.25

0.81093022

2.5 0.91629073

2.75

1.0116009

3. 1.0986123

Taking x0 = 10.0 as the initial point where the
Newton—Raphson algorithm will start to look for a solu-
tion, f, can be found by

fq = x0;

sint (or some other function where the above compo-
sitions are defined) can be calculated by dualizing the
Runge-Kutta algorithm. Such an algorithm is dualized
in the function rk4dual(ul,u2,t0,x10,x20,np,td).
In this function, x10 and x20 are the initial conditions

for f(to) and f'(to) respectively (see Section 2.3.3 for

details and also for the definitions of u; and us); td is

for k=1:50 the dual point where we want to evaluate the solution;

fauxd = fej2(dual(fq,1,0)); and np is the number of steps between tq and and the

fq = fq - fauxd.f0/fauxd.f1; real component of td. The values for f(t), (f o g)(¢),
end

After this, the obtained thermal diffusivity was oy =
6.00 x 10~%m 2s~! which is in good agreement with the
value reported in [24,42].

3.5 Dual Runge—Kutta example

Consider the Duffing equation studied in [27]

() + 04 £ () + L1F(t) + £2(t) = 2.1 cos(1.81)

(go f)(t), as well as their first and second derivatives at
t = 1.0 are shown in Table 6.

4 Conclusions

After a dualization of the normal cubic spline interpo-
lation algorithm, the Runge—Kutta algorithm, and the
Newton—Raphson algorithm, it is possible to calculate
the derivatives of functions efficiently, precisely, and ac-
curately. So we can calculate the derivatives of functions
depending on the solution of algebraic or differential

46
with initial conditions (46) equations as well as functions resulting from the spline
interpolation of experimental data. As an added value
f(0)=0.3, f'(0) = —2.3. (47) to the normal cubic spline interpolation algorithm, it is

The values f(t), (fog)(t), (go f)(t), as well as their first
and second derivatives at t = 1.0 (or at some other ¢
where the functions are defined) for the function g(t) =

shown that a closed form expression for its coefficients
can be obtained. Interesting applications in science and
engineering were studied. Those examples can be used
as a guide to dualize many other functions and algo-

Table 5: Results for the dual cubic spline interpolation example 1.

y(wo)  y'(zo)  flwo)

['(wo)  g(zo)  g'(20)

0.5596 0.5727 0.4931

1.1836 0.5272 0.2097
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Table 6: Results for the Runge-Kutta example. The functions are evaluated at ¢t = 1.0.

f I I (fog) (fog) (fog)” (gof) (gof) (g0f)
—0.7474 —0.1282 0.8140 —0.6797 —0.0940 0.6081 —0.7144 —0.1638  0.6608

rithms. For example, it would be interesting to dualize  ond derivative (which is actually the first derivative of
the trapezium rule although this would be only for aca-  the function to integrate). Nevertheless, the dualization
demic purposes since there is not much to gain because of an integration method could be necessary for dualiz-
its components would be the integral, the first derivative  ing some other algorithm.

(which is actually the function to integrate), and the sec-
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