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RESUMEN 
En este trabajo se propone una arquitectura de red neuronal para el desarrollo de aplicaciones para 
el procesamiento digital de señales e imágenes, utilizando técnicas recursivas y de cómputo paralelo 
con el fin de obtener un balance favorable de área y de velocidad de procesamiento. El diseño 
propone una estructura con niveles de pipeline que reduce significativamente los recursos de 
hardware en un dispositivo arreglo de compuertas programable en el campo (FPGA). La 
implementación del hardware se realizó con el sintetizador Xilinx XST ISE Web-Pack, y se 
obtuvieron 72 Slice Flipflops, 45 Slices, y 23 Luts, con la posibilidad de implementar hasta 103 
neuronas en un FPGA Xilix Spartan3EXC3S500E. 
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An efficient and low resource static neural network 
architecture for signal and image processing applications 

 
ABSTRACT 
This paper proposes a novel artificial neural network (ANN) architecture for the development of 
signal processing applications. The presented approach implements parallel computing and 
recursive techniques, in a pipelined structure that balance the speed and hardware resources in a 
Field Programmable Gate Array (FPGA). Experimental results demonstrated a significant tradeoff 
between speed and hardware resources used in FPGA devices for signal processing applications. 
Based on Xilinx XST synthetizer, each neuron occupy 72 Slice Flipflops, 45 Slices, and 23 LUTs, 
which represents the possibility to implement up to 103 neurons in a FPGA Xilinx Spartan3E 
XC3S500E. 
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I. INTRODUCTION 
Artificial neural networks (ANNs) are 
computational algorithms inspired by the 
biological neural network of human brain 
(Dayhoff, 1990). ANNs presents a series of 
characteristics of the brain; they can learn 
from experience by changing their behavior 
depending on the environment and abstract 
the main characteristics of a series of data 
that apparently do not present common 
aspects (Hilera and Martínez, 1995). The 
objective of artificial neural networks is to 
simulate the way the human brain processes 
information since it is completely different 
from the operation of a computer that 
processes information in a linear way, while a 
neural network can perform parallel 
processing since it is highly complex and 
non-linear. 
 
ANN contains a highly parallel distribution 
information processor, composed of multiple 
simple processing units called neurons that 
are characterized by having a natural 
inclination to acquire knowledge through 
experience, have a very high plasticity and 
great adaptability. They possess a high fault 
tolerance and has a non-linear behavior, 
allowing them to process information from 
other non-linear phenomena (Kröse and 
Smagt, 1996). Compared with software, the 
FPGA-based ANN implementation can 

utilize parallelism to speedup processing 
time. However, the implementation of ANN 
on FPGA devices deals with the design of 
complex arithmetic operations that require a 
tradeoff between precision and 
implementation (area and time performance). 
For example, standard floating-point 
representations minimize quantization errors 
while requiring significant hardware 
resources, and fixed-point representation may 
require less hardware resources but add 
quantization errors. 
 
In this study, a novel ANN architecture is 
implemented using parallel computing and 
recursive techniques for the development of 
signal processing applications. The presented 
approach employs the Very High Speed 
Integrated Circuits Hardware Description 
Language (VHDL) and is implemented on a 
Xilinx Spartan3E XC3S500E chip. For the 
Log-Sigmoid, Gaussian and Hyperbolic 
Tangent function implementations, a 
pipelined parallel design has been employed. 
Finally, hardware resource comparative 
analysis results have been presented. 
 
II. ARTIFICIAL NEURAL NETWORK 
BACKGROUND 
An artificial neuron is a processing unit with 
three functional elements as shown in Figure 
1. 

 

 
Figure 1. Design flow of an artificial neuron. 

 
The basic elements of an ANN are: (1) a set 
of input nodes or pattern vector ! =
!!, !!,… , !!! !, where one or more signals, 

usually from other neurons, are attenuated or 

amplified by a weight factor; (2) synaptic 
connections whose strengths are represented 
by a set of weights, here denoted by 
! = !!,!!,… ,!!! !; and (3) an activation 



Pantí-de la Rosa, et al / Ingeniería 21-2 (2017) 23-29 

25!

function!! that relates the total synaptic input 
to the output of the neuron. Here, ! is applied 
to the output of the adder to decide whether 
the neuron is activated. 
 
The synaptic sum, !, to the neuron is given 
by the inner product of the input and weight 
vectors as follows: 
 

! = !!!!
!

!!!
 (1) 

 
where the threshold of the activation is 
applied to the synaptic input. The output of 
the neuron, ! , is given by 
 

! = !(!) (2) 
 
where !(∙) is the neuron activation function. 
 
Commonly used activation functions are: 
 

• the Sigmoid activation function, where 
function is 

 

! ! = 1
1 + !!!, (3) 

 
• the hyperbolic tangent function 

 

! ! = 2
1 + !!!! − 1, (4) 

 
and the Gaussian function 
 

! ! = !!
!!! !
!!! , (5) 

 
where !, ! denotes real constants. 
 
Figure 2 presents the graphic of each 
activation function considered in this study. 
 
It is important to note here two critical points 
in relation to hardware implementation. First, 
parallelism can be justified only when high 
performance is attained at a reasonable 
hardware resource cost, and the Second, is 
that many techniques exist for implementing 
the neural network activation functions: 
polynomial approximations, the COordinate 
Rotation DIgital Computer (CORDIC) 
algorithm, rational approximations, table-
driven methods, among others 
(Alimohammad, 2010). For hardware 
implementation, accuracy, performance and 
cost are all important, and many developed 
techniques in numerical analysis are not 
suitable for hardware implementation. For 
example, CORDIC is perhaps the most 
studied technique for hardware 
implementation, but it is rarely implemented: 
its advantage is that the same hardware can 
be used for several functions, but the 
resulting performance is usually rather poor. 
 
III. HARDWARE IMPLEMENTATION 
In this section, the hardware design 
implementation of the static neural network is 
presented. The architecture is conceptualized 
in two main blocks as illustrated in Figure 3: 
a finite impulse response (FIR) synapse and a 
pipelined non-linear activation function.

 
 

   
a) b) c) 

 
Figure 2. Design flow of an ANN Commonly used activation functions: a) Sigmoid, b) Hyperbolic 

Tangent, c) Gaussian. 
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Figure 3. Static artificial neuron architecture. 

 
The synaptic weight of (1) can be modeled as 
a FIR filter of digital filter theory. Using the 
method introduced by Lapedes and Farber 
(1987), the dependency of current outputs on 
previous inputs are modeled using a FIR 
synaptic model as follows: 
 

! ! = !!
!

!!!
!(! − !), (6) 

where ! ! is the synapse output at time !, 

and !(! − !) is the delayed input to the 
synapse. 
The architecture of the FIR synapse block is 
based on a signed 8-bit fixed-point Recursive 
Multiply-Accumulate Core (MAC) structure. 
As shown in Figure 4, the inputs of the 
neuron !(! − !) are entered in a serial form, 
and the output ! !  is obtained after a defined 
number of clock cycles ∆!. 

 

 
Figure 4. Recursive FIR synapse structure. 

 
The FIR synapse block obtains its 
coefficients by pre-calculating and storing 
them in Read Only Memory (ROM) via an 

addressable generator unit (AGU) block. A 
control finite state machine (FSM) is the 
responsible to coordinate all operations. Due 



Pantí-de la Rosa, et al / Ingeniería 21-2 (2017) 23-29 

27!

to the serial nature of this block, the number 
of inputs determinate the total time of 
calculate the output processing time. 
 
The hardware of the two-level pipelined 
ANN activation function is based on the 
Horner’s Method and the series of Taylor 
approximation. The algorithm computes a 
third order polynomial, which approximates 
the Taylor series into a computationally 
efficient form. Given a polynomial 
! ! = !!!!!

!!! , where !!,… , !! are real 

numbers, the approximation is represented as 
follows 
 

! ! = !! + ! !!
+ ! !! +⋯
+ ! !!!! + !!! . 

(7) 

 
Figure 5 presents the fixed-point architecture 
of the pipelined ANN activation function.

 
 

 
Figure 5: Pipelined ANN activation function architecture of the neuron. 

 
In this study, the sigmoid, Gaussian and the 
hyperbolic tangent activation functions are 
developed and compared with other FPGA 
implementations as described in the next 
section. 
 
IV. EXPERIMENTAL RESULTS 
The results of the area and time performance 
implementation of the static neural network 
architecture are presented in Table 1 and 2. In 
the area comparative analysis of Table 1, the 

Sigmoid, Gaussian and Hyperbolic Tangent 
activation functions were used considering 
the FPGA Spartan3E XC3S500E-4FG320 
target device. The synthesis metrics specify 
the area and percent of utilization of the 
corresponding hardware cores. The HW 
architecture is designed using VHDL and 
synthesized using the Integrated Software 
Environment (ISETM) WebPACKTM 14.7 of 
the Xilinx XST tool. 

 
 

Table 1. Device Utilization Summary for the static ANN 
Device Utilization Summary 

ANN Activation Functions Sigmoid Gaussian Hyperbolic 
Tangent 

Number of Slice Flip Flops  72(1%)* 74(1%) 78(1%) 
Number of 4 input LUTs  23(1%) 23(1%) 25(1%) 
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Number of occupied Slices  45(1%) 49(1%) 53(1%) 
Number of bonded IOBs  26(11%) 26(11%) 26(11%) 

*In parenthesis, percent of logic utilization based on FPGA Spartan3E XC3S500E-4FG320 
 

 
Figure 6. RTL Schematic of the MAC core using Horner’s Method and three Pipeline levels. 

 
Due the complexity of each activation 
function, the implementation has different 
levels of hardware resource utilization. The 
device utilization is directly proportional to 
the number of neurons that can be 
implemented in the FPGA, however, even in 
the most complex of the selected activation 
functions, it may be noted a small number of 
hardware resources without compromise the 
time performance implementation. 

 
In this paradigm of design, it can be 
implemented multiple neurons working in an 
effective pipelined implementation as 
illustrated in Figure 6, being a cost-effective 
solution to different non-linear applications. 
Based on area and timing reports of Xilinx 
XST, the maximum clock rate and neurons 
for this approach are shown in Table 2.

 
Table 2. Maximum Ratings for Implementation 

Maximum Clock Rate  46 Mhz 
Maximum Number of Neurons using Gaussian Function  94 
Maximum Number of Neurons using Sigmoid Function  103 
Maximum Number of Neurons using Hyperbolic Tangent Function 89 

 
V. CONCLUSIONS 
An static artificial neural network (ANN) 
architecture was designed for the 
development of signal processing 
applications. The design was implemented 
using parallel computing and recursive 
techniques, in a pipelined structure that 
balance the speed and hardware resources in 

a Xilinx Spartan3E XC3S500E FPGA. 
Particularly, an area and time comparative 
analysis of the Log-Sigmoid, Gaussian and 
Hyperbolic Tangent functions demonstrated a 
well-balance performance between speed and 
occupied hardware resources used in the 
FPGA. 
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