
!

23!

Arquitectura eficiente y de área reducida de una red
neuronal estática para aplicaciones de procesamiento de

señales e imágenes

Pantí de la Rosa, D. J.1, Granados Cervera, J. G.1, Méndez Méndez, J. A.1,
Castillo Atoche, A.2, Sandoval Curmina, V.1, Cruz Jimenez, B.2, Moreno Sabido, M.1

Fecha de recepción: 29 de junio de 2017 – Fecha de aprobación: 18 de septiembre de 2017

RESUMEN
En este trabajo se propone una arquitectura de red neuronal para el desarrollo de aplicaciones para
el procesamiento digital de señales e imágenes, utilizando técnicas recursivas y de cómputo paralelo
con el fin de obtener un balance favorable de área y de velocidad de procesamiento. El diseño
propone una estructura con niveles de pipeline que reduce significativamente los recursos de
hardware en un dispositivo arreglo de compuertas programable en el campo (FPGA). La
implementación del hardware se realizó con el sintetizador Xilinx XST ISE Web-Pack, y se
obtuvieron 72 Slice Flipflops, 45 Slices, y 23 Luts, con la posibilidad de implementar hasta 103
neuronas en un FPGA Xilix Spartan3EXC3S500E.

Palabras Clave: Red Neuronal, Procesamiento Digital de Señales, Cómputo paralelo, FPGA.

An efficient and low resource static neural network
architecture for signal and image processing applications

ABSTRACT
This paper proposes a novel artificial neural network (ANN) architecture for the development of
signal processing applications. The presented approach implements parallel computing and
recursive techniques, in a pipelined structure that balance the speed and hardware resources in a
Field Programmable Gate Array (FPGA). Experimental results demonstrated a significant tradeoff
between speed and hardware resources used in FPGA devices for signal processing applications.
Based on Xilinx XST synthetizer, each neuron occupy 72 Slice Flipflops, 45 Slices, and 23 LUTs,
which represents the possibility to implement up to 103 neurons in a FPGA Xilinx Spartan3E
XC3S500E.

Keywords: Neural Network, Digital Signal Processing, Parallel computing, FPGA.

1 Studies Division, Instituto Tecnológico de Mérida, Mérida, México
2 Facultad de Ingeniería-UADY, Av. Industrias No Contaminantes por Anillo Periférico Norte s/n Apdo.

Postal 150. Cordemex, Mérida, Yucatán, México.
 Autor de correspondencia: acastill@correo.uady.mx
Nota: Este artículo de investigación es parte de Ingeniería–Revista Académica de la Facultad de Ingeniería,

Universidad Autónoma de Yucatán, Vol. 21, No. 2, 2017, ISSN: 2448-8364.

Pantí-de la Rosa, et al / Ingeniería 21-2 (2017) 23-29

24

I. INTRODUCTION
Artificial neural networks (ANNs) are
computational algorithms inspired by the
biological neural network of human brain
(Dayhoff, 1990). ANNs presents a series of
characteristics of the brain; they can learn
from experience by changing their behavior
depending on the environment and abstract
the main characteristics of a series of data
that apparently do not present common
aspects (Hilera and Martínez, 1995). The
objective of artificial neural networks is to
simulate the way the human brain processes
information since it is completely different
from the operation of a computer that
processes information in a linear way, while a
neural network can perform parallel
processing since it is highly complex and
non-linear.

ANN contains a highly parallel distribution
information processor, composed of multiple
simple processing units called neurons that
are characterized by having a natural
inclination to acquire knowledge through
experience, have a very high plasticity and
great adaptability. They possess a high fault
tolerance and has a non-linear behavior,
allowing them to process information from
other non-linear phenomena (Kröse and
Smagt, 1996). Compared with software, the
FPGA-based ANN implementation can

utilize parallelism to speedup processing
time. However, the implementation of ANN
on FPGA devices deals with the design of
complex arithmetic operations that require a
tradeoff between precision and
implementation (area and time performance).
For example, standard floating-point
representations minimize quantization errors
while requiring significant hardware
resources, and fixed-point representation may
require less hardware resources but add
quantization errors.

In this study, a novel ANN architecture is
implemented using parallel computing and
recursive techniques for the development of
signal processing applications. The presented
approach employs the Very High Speed
Integrated Circuits Hardware Description
Language (VHDL) and is implemented on a
Xilinx Spartan3E XC3S500E chip. For the
Log-Sigmoid, Gaussian and Hyperbolic
Tangent function implementations, a
pipelined parallel design has been employed.
Finally, hardware resource comparative
analysis results have been presented.

II. ARTIFICIAL NEURAL NETWORK
BACKGROUND
An artificial neuron is a processing unit with
three functional elements as shown in Figure
1.

Figure 1. Design flow of an artificial neuron.

The basic elements of an ANN are: (1) a set
of input nodes or pattern vector ! =
!!, !!,… , !!! !, where one or more signals,

usually from other neurons, are attenuated or

amplified by a weight factor; (2) synaptic
connections whose strengths are represented
by a set of weights, here denoted by
! = !!,!!,… ,!!! !; and (3) an activation

Pantí-de la Rosa, et al / Ingeniería 21-2 (2017) 23-29

25!

function!! that relates the total synaptic input
to the output of the neuron. Here, ! is applied
to the output of the adder to decide whether
the neuron is activated.

The synaptic sum, !, to the neuron is given
by the inner product of the input and weight
vectors as follows:

! = !!!!
!

!!!
 (1)

where the threshold of the activation is
applied to the synaptic input. The output of
the neuron, ! , is given by

! = !(!) (2)

where !(∙) is the neuron activation function.

Commonly used activation functions are:

• the Sigmoid activation function, where
function is

! ! = 1
1 + !!!, (3)

• the hyperbolic tangent function

! ! = 2
1 + !!!! − 1, (4)

and the Gaussian function

! ! = !!
!!! !
!!! , (5)

where !, ! denotes real constants.

Figure 2 presents the graphic of each
activation function considered in this study.

It is important to note here two critical points
in relation to hardware implementation. First,
parallelism can be justified only when high
performance is attained at a reasonable
hardware resource cost, and the Second, is
that many techniques exist for implementing
the neural network activation functions:
polynomial approximations, the COordinate
Rotation DIgital Computer (CORDIC)
algorithm, rational approximations, table-
driven methods, among others
(Alimohammad, 2010). For hardware
implementation, accuracy, performance and
cost are all important, and many developed
techniques in numerical analysis are not
suitable for hardware implementation. For
example, CORDIC is perhaps the most
studied technique for hardware
implementation, but it is rarely implemented:
its advantage is that the same hardware can
be used for several functions, but the
resulting performance is usually rather poor.

III. HARDWARE IMPLEMENTATION
In this section, the hardware design
implementation of the static neural network is
presented. The architecture is conceptualized
in two main blocks as illustrated in Figure 3:
a finite impulse response (FIR) synapse and a
pipelined non-linear activation function.

a) b) c)

Figure 2. Design flow of an ANN Commonly used activation functions: a) Sigmoid, b) Hyperbolic

Tangent, c) Gaussian.

Pantí-de la Rosa, et al / Ingeniería 21-2 (2017) 23-29

26

Figure 3. Static artificial neuron architecture.

The synaptic weight of (1) can be modeled as
a FIR filter of digital filter theory. Using the
method introduced by Lapedes and Farber
(1987), the dependency of current outputs on
previous inputs are modeled using a FIR
synaptic model as follows:

! ! = !!
!

!!!
!(! − !), (6)

where ! ! is the synapse output at time !,

and !(! − !) is the delayed input to the
synapse.
The architecture of the FIR synapse block is
based on a signed 8-bit fixed-point Recursive
Multiply-Accumulate Core (MAC) structure.
As shown in Figure 4, the inputs of the
neuron !(! − !) are entered in a serial form,
and the output ! ! is obtained after a defined
number of clock cycles ∆!.

Figure 4. Recursive FIR synapse structure.

The FIR synapse block obtains its
coefficients by pre-calculating and storing
them in Read Only Memory (ROM) via an

addressable generator unit (AGU) block. A
control finite state machine (FSM) is the
responsible to coordinate all operations. Due

Pantí-de la Rosa, et al / Ingeniería 21-2 (2017) 23-29

27!

to the serial nature of this block, the number
of inputs determinate the total time of
calculate the output processing time.

The hardware of the two-level pipelined
ANN activation function is based on the
Horner’s Method and the series of Taylor
approximation. The algorithm computes a
third order polynomial, which approximates
the Taylor series into a computationally
efficient form. Given a polynomial
! ! = !!!!!

!!! , where !!,… , !! are real

numbers, the approximation is represented as
follows

! ! = !! + ! !!
+ ! !! +⋯
+ ! !!!! + !!! .

(7)

Figure 5 presents the fixed-point architecture
of the pipelined ANN activation function.

Figure 5: Pipelined ANN activation function architecture of the neuron.

In this study, the sigmoid, Gaussian and the
hyperbolic tangent activation functions are
developed and compared with other FPGA
implementations as described in the next
section.

IV. EXPERIMENTAL RESULTS
The results of the area and time performance
implementation of the static neural network
architecture are presented in Table 1 and 2. In
the area comparative analysis of Table 1, the

Sigmoid, Gaussian and Hyperbolic Tangent
activation functions were used considering
the FPGA Spartan3E XC3S500E-4FG320
target device. The synthesis metrics specify
the area and percent of utilization of the
corresponding hardware cores. The HW
architecture is designed using VHDL and
synthesized using the Integrated Software
Environment (ISETM) WebPACKTM 14.7 of
the Xilinx XST tool.

Table 1. Device Utilization Summary for the static ANN
Device Utilization Summary

ANN Activation Functions Sigmoid Gaussian Hyperbolic
Tangent

Number of Slice Flip Flops 72(1%)* 74(1%) 78(1%)
Number of 4 input LUTs 23(1%) 23(1%) 25(1%)

Pantí-de la Rosa, et al / Ingeniería 21-2 (2017) 23-29

27!

Number of occupied Slices 45(1%) 49(1%) 53(1%)
Number of bonded IOBs 26(11%) 26(11%) 26(11%)

*In parenthesis, percent of logic utilization based on FPGA Spartan3E XC3S500E-4FG320

Figure 6. RTL Schematic of the MAC core using Horner’s Method and three Pipeline levels.

Due the complexity of each activation
function, the implementation has different
levels of hardware resource utilization. The
device utilization is directly proportional to
the number of neurons that can be
implemented in the FPGA, however, even in
the most complex of the selected activation
functions, it may be noted a small number of
hardware resources without compromise the
time performance implementation.

In this paradigm of design, it can be
implemented multiple neurons working in an
effective pipelined implementation as
illustrated in Figure 6, being a cost-effective
solution to different non-linear applications.
Based on area and timing reports of Xilinx
XST, the maximum clock rate and neurons
for this approach are shown in Table 2.

Table 2. Maximum Ratings for Implementation

Maximum Clock Rate 46 Mhz
Maximum Number of Neurons using Gaussian Function 94
Maximum Number of Neurons using Sigmoid Function 103
Maximum Number of Neurons using Hyperbolic Tangent Function 89

V. CONCLUSIONS
An static artificial neural network (ANN)
architecture was designed for the
development of signal processing
applications. The design was implemented
using parallel computing and recursive
techniques, in a pipelined structure that
balance the speed and hardware resources in

a Xilinx Spartan3E XC3S500E FPGA.
Particularly, an area and time comparative
analysis of the Log-Sigmoid, Gaussian and
Hyperbolic Tangent functions demonstrated a
well-balance performance between speed and
occupied hardware resources used in the
FPGA.

ocm

ocm
28

Pantí-de la Rosa, et al / Ingeniería 21-2 (2017) 23-29

27!

REFERENCES

A. Alimohammad, S. F. Fard, B. F. Cockburn (2010), "A unified architecture for the accurate and
high-throughput implementation of six key elementary functions," IEEE Trans. on Computers,
59(4), 449-456.

Dayhoff J. (1990). Early Adaptive Networks. Chapter 2 in “Neural Network Architectures. An
introduction”. Van Nostran Reinhold, New York, USA.

Fausett L. (1994). Simple Neural Nets for Pattern Classification. Chapter 2 in “Fundamentals of
Neural Networks”, 39-100, Prentice Hall, New Yersey, USA.

Haykin S. (1999). Information-Thoeretic Models. Chapter 10 in “Neural Networks”. 506-565,
Pearson Education, New Yersey, USA.

Hilera J.R. and Martínez V.J. (1995). Una Introducción a la Computación Neuronal. Chapter 1 In
“Redes neuronales artificiales: Fundamentos, modelos y aplicaciones”, 1-44 Ra-Ma Editorial,
Madrid, Spain.

Knuth, D. E. (1998). Evaluation of Polynomials. Chapter 4.6.4 in “The Art of Computer
Programming, Vol. 2: Seminumerical Algorithms”, 466-506, Addison-Wesley, Massachusetts,
USA.

Kröse, B. and Smagt, P. (1996). Fundamentals, Chapter I in “An introduction to neural networks”,
11-20, University of Amsterdam, Amsterdam, Netherlands.

Este documento debe citarse como: Pantí de la Rosa, D. J., Granados Cervera, J. G., Méndez Méndez, J. A.,
Castillo Atoche, A., Sandoval Curmina, V., Cruz Jimenez, B., Moreno Sabido, M. (2017). Arquitectura
eficiente y de área reducida de una red neuronal estática para aplicaciones de procesamiento de señales
e imágenes. Ingeniería, Revista Académica de la FI-UADY, 21-2, pp. 23-29, ISSN 2448-8364.

ocm

ocm
29

