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ABSTRACT 
A method for the accurate detection of level-shifts in 1/݂ఈ communication network traffic traces is presented in this 
article. The method is based on the definition of the concept of physical information in the time-scale domain. It is 
shown that wavelet physical information describes the complexities associated to fractal 1/݂ఈ signals and shows 
robustness in detecting weak level-shifts embedded in these signals. Experimental results using synthesized signals 
mimicking signals with level-shifts validate our results. Applications of wavelet physical information to real 1/݂ఈ 
traces, particularly in detecting route-changes in delay time series and jumps in VBR video traffic are discussed. 
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Detección de cambios de niveles en trazas de tráfico 
de redes de comunicación 

 
RESUMEN 
Este artículo presenta un método para la detección eficiente de cambios de nivel en trazas de tráfico en redes de 
comunicaciones. El método se basa en la aplicación del concepto de información física en el dominio tiempo-escala. 
Se muestra que la información física en el dominio de las ondoletas describe las complejidades asociadas a las 
señales fractales del tipo 1/݂ఈ y se muestra que es robusta en la detección de cambios de nivel de baja amplitud 
añadidos a estas señales. Resultados experimentales usando señales simuladas con cambios de nivel muestran la 
validez de nuestras afirmaciones. Se discuten de igual manera aplicaciones de la información física en el dominio de 
las ondoletas en la detección de cambio de rutas en trazas de retardos y saltos en trazas de video VBR. 
 
Palabras Clave: Redes de comunicaciones, Ondoletas, señales fractales 1 ݂௔⁄  
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INTRODUCTION 
Fractal processes describe a large number of 
phenomena appearing in diverse fields of science. The 
voltage fluctuations in resistors, semiconductors and 
vacuum tubes (Frieden and Hughes, 1994); 
aggregated traffic in communications networks 
(Leland et al. 1994); wireless communications tra-ffic 
(Lee and Fapojuwo 2005) and laser propaga-tion 
through turbulent media (Zunino et al. 2004) 
represent just a partial list of such phenomena. Fractal 
processes are characterized among other properties by 
self-similarity and 1/݂  power spectrum. Parameter 
estimation has been recognized as an important issue 
in characterizing such signals (Taqqu et al. 1995) and 
many estimators have claimed to provide efficient and 
accurate estimation under the assumption of pure 
fractal behaviour. Estimation of parameters of fractal 
processes, however, remains a field of active research 
due to the absence of a robust estimator capable of 
dealing with the many features encountered in 
recorded data (Serinaldi 2010). Periodicities, missing 
values and level-shifts impact significantly the 
estimated parameters giving rise to biased estimates 
and consequently misinterpretation of the phenomena. 
Motivated by this, the paper defines the notion of 
physical information in a dyadic time-scale 
representation of the data (Wavelet Physical 
Information, WPI) and explores the possibility to use 
its properties for the detection of level-shifts 
embedded in stationary and non-stationary fractal 
processes of parameter ߙ, ߙ ∈ ܴ. The proper detection 
of such level-shifts will improve the overall 
estimation process. As a matter of fact, the paper 

shows that WPI detects level shifts in stationary and 
non-stationary contexts using synthesized signals 
mimicking fractal-like properties. The application of 
WPI in several real communication network traffic 
trace is presented. In particular, it is shown that WPI 
can detect route-change in delay times series traces 
and also jumps in Variable-Bit-Rate (VBR). The 
organization of the paper is as follows. Methodology 
section reviews fractal processes and its wavelet 
analysis. It also constructs probability mass functions 
(pmfs) using the wavelet spectrum of fractal signals. 
The notion of physical information based on Fisher 
information measure (FIM) is briefly described and 
the wavelet physical information (WPI) is defined. 
Finally, this section provides description of the 
procedure used for detecting level-shifts in fractal 
signals using WPI and synthetic fractal processes with 
known parameter ߙ . Results and discuccion section 
presents experimental results of the WPI as level-shift 
detection by using synthesized signals with fractal-
like behaviour and evaluates its ability to detect 
routing changes in real traces and jumps in VBR 
video traces. Finally, the conclusion of the paper is 
given. 
 
METHODOLOGY 
Fractal Signals 
Fractal random processes have been found in 
numerous fields of science and technology. They are 
characterized by self-similarity and 1/݂ఈ  power 
spectrum. Self-similarity is defined as invariance of 
statistical properties under proper scaling of time and 
space, i.e., 

(ݐܽ)ܺ  ܽିுܺ(ݐ),         (1) 
 
for a process ܺ(ݐ), ߙ ℝ and ߳ ݐ ∈ ℝ. 1/݂ఈ spectra, on 
the other hand, dictates the form of the spectral 

density function (SDF) as a power-law in a range of 
frequencies, formally ܺ(ݐ) presents a 1/݂ఈ spectra if 

 ܵ௫(݂) ∽ ௙ܿ|݂|ିఈ, ݂߳ ( ௔݂, ௕݂)       (2) 
 
and ௙ܿ  is a constant where ௔݂  and ௕݂  represent the 
lower and upper frequencies upon which the power-
law holds. Depending upon ߙ, these processes exhibit 
time-dependent and time-independent moments. 
When ߙ ∈ (−1,1), the process is stationary while for ߙ ∈ (1,3) , process is regarded as non-stationary. 
Many stochastic models satisfy the conditions of self-
similarity and 1/݂ఈ spectra. The most popular, by far, 
are fractional Brownian motions (fBm), fractional 
Gaussian noises (fGn), pure-power-law models and 
fractional ARIMA signals. For more details on the 
definition, properties and estimators of self-similar 
signals please refer to (Beran 1994, Percival 2003 Lee 

and Fapojuwo 2005). 
 
Wavelet Analysis of Fractal Signals 
Wavelets and wavelet transforms have played an 
important role in the analysis, estimation and 
modeling of signals with fractal-like structure (Abry 
and Veitch 1998, Veitch and Abry 1999, Soltani, et 
al. 2004, Pesquet-Popescu 1999). In-deed, estimators 
based on orthonormal wavelet transforms (OWT) are 
recognized as the more efficient non-parametric 
estimators of ߙ , by far, the principal parameter 
characterizing scaling or fractal signals. Although 
these estimators are efficient they tend to 



Ramírez-Pacheco et al. / Ingeniería 15-2 (2011) 81-91 

83 

overestimate stationary fractal signals in the presence 
of level-shifts of amplitude (1) (Stoev et al. 2005). 
Let ܺ(ݐ)  be a fractal process with SDF satisfying 
equation (2), the discrete wavelet transform (DWT) of ܺ(ݐ) , at time ݇ ∈ ℤ  and scale ݆ ∈ ℤ  is defined as ݀௫(݆, ݇)  ≜  2ି௝/ଶ ׬  ݐ2ି௝)߰(ݐ)ܺ − ݐ݀(݇  for some 
dilated and translated mother or analyzing wavelet ߰(ݐ). 

The family of functions ߰௝,௞(ݐ) ≜  2ି௝/ଶ߰(2ି௝ݐ − ݇) 
form an orthonormal set and thus any function ܺ(ݐ) ∈ ℒଶ(ℝ) (of finite energy) can be represented as ܺ(ݐ) =  ∑ ∑ ,݆)௑݀(ݐ)ܺ ݇)௞௝ . For fractal processes the 
variance of such DWT or wavelet coefficients, ॱ݀௑ଶ(݆, ݇) , called the wavelet apectrum or wavelet 
variance is of primary importance since for fractal 
singnals they satisfy 

 ॱ݀௑ଶ(݆, ݇) ∽  2௝ఈܥ(߰,  (3)         ,(ߙ
 
where ܥ(߰, (ߙ =  ܿγ ఈ|Ψ(f)|ଶ݂݀ି|݂|׬  and Ψ(݂)  is 
the Fourier Transform of the mother wavelet ߰(ݐ) at 
Fourier frequency ݂. The importance of the wavelet 
spectrum resides in its ability to estimate α (Abry et 
al. 2009, Stoev et al. 2005, Flandrin 1992) and to 
construct form such a representation probability mass 
functions (pmf) which would allow a deeper 
understanding of their dynamics and nature (Zunino 
et al. 2007, Perez et al. 2007, Kowalski 2009). 

Indeed, estimation from such wavelet spectrum 
representation has been shown to be robust to 
periodicities and trends of polynomial nature. 
Probability mass functions derived from the wavelet 
spectrum allowed to define quantifiers such as 
wavelet entropy (Zunino et al. 2007), wavelet q-
entropies (Kowalski 2009) among others. The pmf 
derived from the wavelet spectrum takes the form 

௝݌  =  (ேೕ)షభ ∑ ॱௗ೉మ (௝,௞)ೖ∑ (ே೔)షభ ∑ ॱௗ೉మ (௝,௞)ೖౢ౥ౝ మ(ಿ)೔సభ        (4) 

 
where ௝ܰ  representss the number of wavelet 
coefficients at scale ݆. The pmf for a 1/݂ఈ signal of 

length ܰ  is determined by direct application of 
equation (3) to equation (4) which results in 

௝݌  = 2(௝ିଵ)ఈ ଵିଶഀଵିଶഀಾ,     (5) 

 
where ܯ =  log 2(ܰ) . As indicate above numerous 
information theory quantifiers can be determined by 
the use of such a pmf. The paper defines a novel 
quantifier based on Fisher’s information measure and 
the DWT representation of fractal signals. 
 
Fisher’s information measure 
Fisher’s information measure (FIM) has recently been 
applied to several problems of physics and 
engineering (Martin et al. 2001) (Martin et al. 1999) 

(Telesca 2005). Actually, FIM has been employed for 
the detection of changes in non-linear dynamical 
systems (Martin et al. 2001), detection of epileptic 
seizures in EEG signals (Martin et al 1999) and for 
the analysis of geoelectrical signals (Telesca 2005). 
Let ܺ(ݐ)  be a signal with associated probability 
density function (PDF) ௑݂(ݔ) . The Fisher’s 
information of ܺ(ݐ) is defined as 

௑ܫ  = ׬ ቀ డడ௫ ௑݂(ݔ)ቁଶ ௗ௫௙೉(௫) .       (6) 

 
Fisher’s information, ܫ௑  is a non-negative quantity 
that yields large (possibly infinite) values for smooth 
(ordered) signals and small (∼ 0) values for random 
(disordered) signals. In a similar manner, Fisher’s 
information is large for narrow PDFs and small for 
wide (or flat) PDFs. For instance, Fisher’s 
information is expected to be small for Gaussian 

white noise and large for fBm. Fisher’s information 
has been applied in a time-domain context in the 
framework of the analysis of stationary signals. 
Actually, Fisher’s information has been applied to 
non-linear time series using a discretized version of 
equation (6) as 

௑ܫ  = ∑ ቄ(௣೗శభି ௣೗)మ௣೗ ቅ௅௟ୀଵ          (7) 

 
that is suitable for discretized random data with associated pmf ݌௟ . Equation (7), when computed in 
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sliding windows is called Fisher’s information 
measure (FIM). 
 
Wavelet Physical Information 
Since 1/݂ఈ  signals have a well-defined pmf in the 
time-scale domain (as given by equation (5)), a 
Fisher’s information quantifier can be associated to 
these signals. The Fisher’s information (represented 
by equation (6)) applied to equation (5) is referred in 
this work to as wavelet physical information (WPI). 
WPI is thus a dyadic time-scale version of Fisher’s 

information computed with the aid of orthonormal 
DWTs. With the Fisher’s information computed in 
this way, WPI is expected to inherit all the properties 
associated to both wavelet transforms and Fisher’s 
information. Actually, by defining FIM in the time-
scale domain, WPI is expected to detect changes in 
stationary and non-stationary 1/݂ఈ signals even in the 
presence of polynomials trends embedded in these 
signals. Fisher’s information of 1/݂ఈ  signals take the 
particular form 

ଵ/௙ܫ  = (ଶഀିଵ)మ൫ଵିଶഀ(ಾషభ)൯ଵିଶഀಾ ,        (8) 

 
which is a non-negative quantity nearly independent 
of length ܯ = log 2(ܰ). The WPI corresponding to 1/݂ఈ  signals is thus dependent upon α as is expected 
since this parameter determines their ordered and 
disordered character. WPI is expected to be low in the 
interval ߙ ∈ (−1,1)  and higher in the interval ߙ ∈ (1,3). Accordingly, WPI is lower for stationary 1/݂  signals and higher for non-stationary ones. WPI, 
thus characterizes the complexities associated to 1/݂ఈ  signals in the same way as wavelet entropies 
and q-entropies (Kowalski 2009) do. Note, however 
that unlike wavelet q-entropies, WPI, associates high 
values to ordered signals and small values to 
disordered ones. Based on this behavior and the fact 
that for signals with embedded level-shifts the 
estimated ߙො = 1, the paper attempts to use WPI as a 
level-shift detector and studies its robustness for 
synthesized stationary and non-stationary fractal 

signals of pure-power-law type. The appropriateness 
of WPI as a shift-level detector will greatly enhance 
the overall estimation process and will be expected to 
be useful in areas such as electronics, 
communications networks, wireless communications, 
physics among others. 
 
Computation of WPI 
There is several ways in which WPI can be computed. 
The most common are to compute WPI in the whole 
signal and in sliding windows of size w, simulating a 
real-time computation. The latter is more robust and 
more suitable to our purposes since it allows to follow 
the temporal evolution of the WPI. Formally, let ܺ(ݐ௞) be a signal of length ܰ , a subset of ܺ(ݐ௞) at 
time ݉Δ < ௞ݐ < ߱ + ݉Δ  for ݐ௞,Δ ∈ ℤ  can be 
determined as 

 ܺ(݉; ߱,Δ) = Π(௞ݐ)ܺ ቀ[௧ି௠Δ]ఠ − 1/2ቁ        (9) 

 
where ݉ = 0,1,2, … ;  Δ  is a sliding factor, ߱  is the 
size of the window and Π(ݐ)  is the well-known 
rectangular function. To every subset ܺ(݉; ߱,Δ) of ܺ(ݐ௞)  a WPI is computed to obtain ܫ௑(݉)  (݉)௑ܫ .

represents the degree of disorder of the segment of ܺ(ݐ௞)  at (݉Δ, ߱ + ݉Δ) . Finally, the evolution in 
time of WPI for ܺ(ݐ௞)  is archived by plotting the 
relation 

௑ܫ  = ሼ(߱ + ݉Δ,  ௑(݉))ሽ௠ୀ଴௠೘ೌೣ      (10)ܫ
 
where ݉௠௔௫ is the number of window computed. For 
Δ = ߱, ݉௠௔௫ = ܰ/߱. Figure 1 illustrates the WPI for 
a fractal signal of type fGn with ߙ = ܪ2 − 1 =0,Δ = 50 and ߱ = 1024 . Note that WPI is always 
non-negative and the evolution of the WPI displays 
small peaks as expected since fGn with H=0.5 is 
totally disordered. The small peaks can be associated 
to small changes in the structure of the signal and not 
to the presence of a non-stationarity. Figure 2 displays 
the WPI evolution for a smooth signal representing a 
more ordered behaviour than that observed in figure 
1. Figure 2 portrays the time evolution of WPI for a 

non-stationary fBm of index ߙ = ܪ2 + 1 = 2  and 
analyzed using Δ = 50 and ߱ = 1024 . Note that 
WPI evolution displays peaks with higher amplitude 
than the WPI of fGn. These peaks are also associated 
to small changes in the structure of the fBm signal. 
The above-observed behaviour was expected since for 
fractal signals the higher the ߙ the smoother the signal 
(Eke et al. 2000). In the case of fractal signals, when ߙ > 0 , as ߙ  increases, the WPI is expected to 
increase. Thus, we have shown that WPI provides a 
plausible explanation to the complexities associated to 
fractal signals, in the same way as q-entropies do. 
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Note that unlike q-entropies (which decrease) WPI quantifies ordered behaviour by high values. 
 
 

 
Figure 1. WPI for a fGn signal with H = 0.5. Top plot depicts the stationary fractal 

signal while bot-tom plot illustrates the time evolution of its WPI. 
 
 

 
Figure 2. WPI for a fBm signal with ܪ = 0.5. Top plot depicts the non-stationary fractal 

signal and the bottom plot illustrates the time evolution of its WPI. 
 
Level-shift detection with WPI 
It has been reported that the presence of level-shifts, 
periodicities, trends and other types of non-
stationarities impact signficantly the estimated index ߙ  in recorded stationary fractal signals. Most 
estimators are subject to biases when the signal under 
study has these non-stationarities embedded in its 
structure. Because of this, several approaches have 
been advanced mainly to improve the overall 
estimation process. In (Stoev et al. 2005), the wavelet 
spectrum is reported to be a useful tool for detecting 
these phenomena and the effect of several non-
stationarities on the so-called log-scale (LD) diagram 
(Abry and Veitch 1998) was studied. Additionally in 
(Shen et al. 2007) an algorithm capable of 
constructing the level-shifts present in the signal was 
presented. Once the level-shifts were constructed they 
were eliminated in the analyzed signal. Wavelet 
spectrum-based shift-level detection has limited 

applicability due to the fact that it relies in the study 
of the deformation of LD diagram in the presence of a 
level-shift. However, such deformation may be 
caused by other fractal signals, not necessarily a 
level-shift. The method proposed in (Shen et al. 2007) 
is robust but complex. In addition the above-referred 
works limited their attention to stationary fractal 
signals. This article proposes to use the WPI of fractal 
signals as a means to detect such level-shifts in 
stationary and non-stationary settings. The detection 
capabilities of WPI is first studied by using 
synthesized signals conforming to equation (2) in all 
the frequency range (pure-power-law). Signals 
exhibiting this behaviour were generated by the use of 
the fractal package of the statistical software R. Once 
the fractal signal is synthesized, the next step is to add 
to this signal level-shifts. In order to synthesize fractal 1/݂ఈ  signals with level-shifts the following 
operation was performed 
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(ݐ)ܤ = ଵܺ/௙(ݐ) +  ∑ ௝(ݐ)௝1ൣ௧ೕ,௧ೕାே൧ߤ ,        (11) 

 
where ଵܺ/௙(ݐ) is the 1/݂ఈ  signal and 1ൣ௧ೕ,௧ೕାே൧(ݐ)  is 

the indicator function of amplitude ߤ௝ defined in the 
interval (ݐ௝, ௝ݐ + ܰ) (ݐ)ܤ . , thus, represents a 1/݂ఈ 
signal with level-shift embedded in its structure. We 
synthesize signals where the level-shifts are not 
detected by eye. The time evolution of (ݐ)ܤ is then 
analyzed by WPI and the presence of level-shift 
searched. The presence or absence of a level-shift is 
based on the following experimentally observed 
behaviour. 

1. WPI increases when the level-shift is in the 
window of observation. 

2. WPI maintains this high value whenever the 
level-shift duration is in the window of 
observation. 

It is important to stress that the increase in WPI to the 
presence of a level-shift is significantly higher than 
when the level-shift is not present. Based on this, it 
can be inferred that a level-shift narrows the PDF of 
the signal plus level-shift and based on this property, 
accurate detection of level-shifts is accomplished. 
Note also, that by the use of WPI not only the 
beginning but also the complete duration of the level-
shift can be detected. 
 
RESULTS AND DISCUSSION 
Detection in stationary signals 

Figure 3, displays the WPI (Bottom plot) of a 
stationary pure-power-law signal with ߙ = 0.50 (Top 
plot). The length of the signal is 2ଵଷ  points. The 
fractal signal is analyzed using a sliding window of 
length ߱ = 1024 and sliding factor of Δ = 50. Level 
shifts are added to the fractal signal at time instants ݐ ∈ ሼ1500,2000,4000,4500,6500,700ሽ  with 
alternating amplitudes of +0.5 and −0.5. The breaks 
embedded in the fractal signal are plotted in white in 
top plot for reference. Note that as long as the level-
shift is in the window of observation, WPI increases 
and preserves this high value. At the time the level-
shift is not in the window of observation, WPI 
decreases to a small value that approaches zero. Same 
behaviour is observed for signals in the interval ߙ ∈ (−1,1)  (stationary signals). Note that WPI not 
only detects the beginning but also the complete 
duration of the level-shift. Thus, for stationary fractal 
signals, WPI provides a robust detection of level-
shifts with amplitudes higher than 0.5 . These 
amplitudes are by far lower than amplitudes of 
changes reported in (Martin et al. 1999) which in fact 
are observed by eye. These results demonstrate that 
level-shifts narrows the PDF of the observable signal, 
a property which is used by WPI for detecting such 
non-stationarity. 

 

 
Figure 3. Detection of level-shifts embedded in a stationary fGn signal with ܪ = 0.50. Top 
plot display the fractal signal plus breaks in black. Same plot displays the level shifts added 
to the fractal signal in white. Bottom plot presents the wavelet physical information of the 

top plot using ߱ = 1024 and Δ = 50. 
 
Detection in non-stationary signals 
Figure 4 displays the WPI (Bottom plot) of a non-
stationary pure-power-law signal of parameter ߙ = 1.70. The length of the signal is 2ଵଷ points and 

the breaks embedded in this signal are of the same 
nature of the breaks in stationary signal studied 
above. It has been reported that level-shift detection is 
more complex for non-stationary signals since most 
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detectors are based on techniques which require the 
stationary assumption in the signals to work. WPI 
displays a high value as long as the window of 
observation covers the level-shift. When this is not 
the case, WPI is small. In the same way as the WPI 
observed in stationary signals, the WPI of non-
stationary ones allow to follow the beginning and 
complete duration of the level shift with high 
accuracy. Similar results are observed when analyzing 
non-stationary pure-power-law signals in the range ߙ ∈ (1,3). Consequently, WPI allows to detect, with 
high accuracy, level-shifts in stationary as well as 
non-stationary fractal signals of parameter ߙ . The 
above results suggest that WPI must be used as part of 
the estimation process in order to improve the 
estimation of ߙ. It is expected that by the use of WPI, 
the biases observed in the presence of a non-
stationarity be detected and eliminated. In particular, 
the procedure for estimating ߙ, in stationary and non-
stationary frameworks, reported in (Eke et al. 2000) 
can be greatly improved by the use of WPI. 
 
Applications to Communication network traces 
It is known that packets in Internet travel through 
multiple hops in a route and that a change in routing 
damages the network Quality of Service (QoS). For 
instance, outages, loops and instability routes are 
routing pathologies present in the network (Paxson 
1997, Borella et al 1997). The routing instability 
requires a continuing use of CPU-switching implying 
an excessive use of resources and the limitation of the 
World Wide Web (WWW) growth. Also this 
pathology produces a fast Border Gateway Protocol 
(BGP) refresh which bounds the communications 

between Autonomous Systems (AS).  Additionally, 
routing instability can lead to packet loss, increased 
network latency and time to convergence (Labovitz et 
al. 1997). Stanford Linear Accelerator Center reports 
routing instability pathologies in its web page (SLAC 
2001). The solution to this problem has been boarded 
from different perspectives: the aggregation of IP 
prefixes into a set of specific network routers 
(Labovitz et al. 1997) and the off-line analysis of 
traceroute traces to detect the path with the problem 
(Paxson 1997b), however, theaccelerated growth of 
Internet disable a fixed labeling of routers and the 
guarantee of a constant network performance is only 
achievable if the instability is detected on-line. 
Moreover, a non-stationary behavior is presented in 
network parameters such as delay. Thus, the 
contribution of this work is a methodology for 
instability detection through Wavelet-based Physical 
Information in real traces. Figure 5 display a delay 
trace affected by a typical instability in a high traffic 
hour. The instability pathology produces a level-shift 
in the delay trace which was located at time 5800. 
Because WPI was computed with ߱ = 1024 , the 
route change detection was phased but efficiently 
detected. Delay in Internet presents a high variability 
behavior that degrades the network performance and 
can be observed at time 5000 ; the statistical tool 
proposed in this paper (WPI) is no perturbed by this 
kind of outlier. As a final point, the early detection of 
some network pathologies advances the routing task 
and improves the QoS. An additional application of 
WPI is in the analysis of VBR video traces. VBR 
video traces will represent in the future the major type 
of traffic transported in communications networks.  

 

 
Figure 4. Detection of level-shifts embedded in a non-stationary fBm signal with ܪ = 0.50. 

Top plot display the fractal signal plus breaks in black. Same plot displays the level shifts added 
to the fractal signal in white. Bottom plot presents the wavelet physical information of the top 

plot using ߱ = 1024 and Δ = 50. 
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Figure 5. WPI for WWW trace with route-change. 

Top plot depicts the real trace while bottom plot illustrates the time evolution of its WPI. 
 
 

 
Figure 6. WPI of Mr Bean VBR Video Trace. Y axis represents the number of frames per time. 

 
Thus, an accurate characterization of these signals 
will aid in the design of future networks. VBR video 
traffic has been shown to exhibit self-similar 
behaviour (Beran 1994, Lee and Fapojuwo 2005) and 
thus standard fractal analysis tools should be 
employed. Wavelet estimation tools, however, leads 
to Hurst indices Ĥ > 1  (Stoev et al. 2005), an 
indicator of the presence of a non-stationarity 
embedded in the signal. Motivated by this, we apply 
the WPI to various VBR network traffic traces to 
detect the presence of jumps embedded in the signal 
under study. Figure 6 displays a VBR video trace and 
its associated WPI computed in windows of length ߱ =  2048. Note that the WPI of this signal exhibits 
peaks, an indicator of the presence of a level shift 
embedded in the signal. The trace represent the 
number of frames in the video Mr Bean per unit of 
time encoded using a VBR codec. Figure 7 displays 

the trace and its associated WPI for the video Star 
Wars IV. As in the previous figure, peaks are also 
encountered in this signal. Again, this signal can be 
thought of a stationary signal with jumps embedded in 
its structure. Finally, figure 8 depicts the WPI of VBR 
video trace Jurassic Park. Note that as in previous 
traces, the WPI of this signal exhibits peaks with 
suggest that in general VBR video traces can be 
modeled as a fractal signal with level shifts. This 
model explains the biases in the estimated scaling 
exponents and the estimated Ĥ > 1. 
 
This result is important since future communications 
network are expected to transport a high percentage of 
video traffic and thus the design of network 
algorithms will be based on accurate models of this 
traffic.
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Figure 7. WPI of Star Wars IV VBR Video Trace. 
Y axis represents the number of frames per time. 

 

 
Figure 8. WPI of Jurassic Park VBR Video Trace. 
Y axis represents the number of frames per time. 

 
CONCLUSIONS 
A novel method for detecting weak level-shifts in 
stationary and non-stationary 1/݂ఈ  signals with 
emphasis to fractal communications network traffic 
traces was presented in this article. Wavelet physical 
information, basically tantamount to computing 
Fisher information functional on a dyadic time-scale 
representation of the data was shown to be robust in 
the detection of level shifts added to 1/݂ఈ  signals. 
WPI permits to track both the beginning and total 
duration of the level-shifts embedded in 1/݂ signals. 

WPI allowed the description of the complexities 
associated to fractal signals in the same way as 
wavelet q-entropies do. A closed form expression for 
the WPI of 1/݂ఈ  signals was obtained and 
applications to the analysis of real network traffic 
traces discussed. WPI detects changes of route in 
delay time series traces and also jumps in VBR video 
traffic traces. The results demonstrate that WPI is an 
excellent alternative tool for characterizing network 
traces. 
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