MICROALGAS VERDES INMOBILIZADAS EN ALGINATO DE SODIO PARA LA PRODUCCIÓN DE BIOHIDRÓGENO

  • Alejandro Ruiz Marin Universidad Autónoma del Carmen
  • Yunuen Canedo Lopez
  • Juan Carlos Robles Heredia
  • Asteria Narvaez Garcia

Resumen

La combinación de procesos de biotecnología algal y tratamiento de aguas residuales pueden contribuir a la producción de biocombustibles como el bioetanol, biodiesel y biohidrógeno, para remediar los retos que enfrenta la escasez de combustibles fósiles e impactos ambientales. El hidrógeno como fuente energética limpia, es una alternativa prometedora a los combustibles fósiles convencionales. Entre las diferentes tecnologías para producir hidrógeno, están las microalgas, por sus características naturales para crecer, utilizando solo agua y luz solar. Dentro de las grandes oportunidades de las microalgas es que pueden cultivarse en aguas residuales urbanas, por los nutrientes que contienen, reduciendo costos de producción de biomasa y energía. Esta investigación propone, la inmovilización de Chlorella vulgaris y Senedesmus obliquus cultivadas en aguas residuales urbanas para la producción de biohidrógeno bajo procesos de reducción de azufre y calidad lumínica, previa condición anaeróbica a pH 7.5 y 30 ° C y 140 µE m-2 s-1 de intensidad lumínica. De acuerdo a los resultados, la luz azul induce a mayor crecimiento celular que la luz púrpura, mientras, existió mayor producción de hidrógeno en cultivos bajo luz violeta de 128 ml H2 L-1 (productividad 204.8 ml H2 L-1 d-1) y 60,4 ml H2 L-1 (productividad 39.18 mL H2 L-1 d-1) para Senedesmus obliquus y Chlorella vulgaris, respectivamente. Una ventaja adicional es la alta remoción de carbono orgánico de los cultivos de Senedesmus obliquus bajo luz incidente púrpura en comparación con Chlorella vulgaris, ocurriendo doble beneficio: producción de energía y tratamiento de aguas residuales.

Citas

Antal T and Lindblad P. (2005) Production of H2 by Sulphur-deprived cells of the unicellular cyanobacteria Gloeocapsa alpicola and Synechocystis sp. PCC 6803 during dark incubation with methane or at various extracellular pH. J Applied Microbiology, 98: 114-120
Argun H, Kargi F, Kapdan IK. (2009) Effects of the substrate and cell concentration on bio-hydrogen production from ground wheat by combined dark and photo-fermentation. International Journal of Hydrogen Energy, 34: 6181-6188
Argun H, Kargi F, Kapdan IK, Oztekin R. (2008) Biohydrogen production by dark fermentation of wheat powder solution: effects of C/N and C/P ratio on hydrogen yield and formation rate. International Journal of Hydrogen Energy, 33: 1813-1819
Azwar MY, Hussain MA, Abdul-Wahab AK. (2014) Development of biohydrogen production by photobiological, fermentation and electrochemical processes: A review. Renewable and Sustainable Energy Reviews, 31: 158-173
Batista AP, Ambrosano L, Graca S, Sousa C, Marques ASSP, Ribeiro B, Botrel EP, Castro-Neto P, Gouveia L. (2015) Combining urban wastewater treatment with biohydrogen production- An integrated microalgae- based approach. Bioresource Technology, 184: 230-235
Brennan L, Owende P. (2010) Biofuels from microalgae- A review of technologies for production, processing and extractions of biofuels and co-products. Renewable Sustainable Energy Rev, 14: 557-577
Canedo-López Y, Ruiz-Marín A, Zavala-Loría JC. (2016) A two-stage culture process using Chlorella vulgaris for urban wastewater nutrient removal and enhanced algal lipid accumulation under photoautotrophic and mixotrophic conditions. Journal Renewable Sustaintability Energy, 8, 033102. doi: 10.1063/1.4954078.
Chader S, Haceneb H, Agathos SN. (2009) Study of hydrogen production by three strains of Chlorella isolated from soil in the Algerian Sahara. . International Journal of Hydrogen Energy, 34: 4941-4946
Chavez Fuentes P, Ruiz Marin A, Canedo Lopez Y. (2018) Biodiesel synthesis from Chlorella vulgaris under effect of nitrogen limitation, intensity and quality light: estimation on the based fatty acids profiles. Molecular Biology Reports, 45: 1145–1154
Chinnasamy S, Bhatnagar A, Hunt RW, Das KC. (2010) Microalgae cultivation in a wastewater dominated by carpet mill effluents for biodiesel applications. Bioresource Technology, 101 (9): 3097-3105
Costa VJA, De Morais MG. (2011) The role of biochemical engineering in the production of biofuels from microalgae. Bioresource Technology, 102: 2-9
Das D, Veziroglu T. (2001) Hydrogen production by biological processes, a survey of literature. . International Journal of Hydrogen Energy, 26: 13-28
Das P, Lei W, Aziz SS, Obbard JP. (2011) Enhanced algae growth in both phototrophic and mixotrophic culture under blue light. Bioresource Technology, 102(4): 3883–3887
De Godos I, Vargas VA, Blanco S, González MC, Soto R, García-Encina PA, Muñoz R. (2010) A comparative evaluation of microalgae for the degradation of piggery wastewater under photosynthetic oxygenation. Bioresource Technology, 101 (14): 5150–5158
Florin L, Tsokoglou A, Happe T. (2001) A Novel Type of Iron Hydrogenase in the Green Alga Scenedesmus obliquus Is Linked to the Photosynthetic Electron Transport Chain. The Journal of Biological Chemistry, 276 (9): 6125–6132
Gaffron H, Rubin J. (1942) Fermentative and photochemical production of hydrogen in algae. Journal of General Physiology, 26: 219-240
Guillard RLL and Ryther JH. (1962) Studies on marine planktonic diatoms Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. Canadian Journal of Microbiology, 8: 229–239
Ghirardi ML, Zhang L, Lee JW, Flynn T, Seibert M, Greenbaum E. (2000) Microalgae: a green source of renewable H(2). Trends in Biotechnology, 18: 506-511
Gupta S, Pawar SB. (2018) An integrated approach for microalgae cultivation using raw and anaerobic digested wastewaters from food processing industry. Bioresource Technology, 269: 571–576. https://doi.org/10.1016/j.biortech.2018.08.113.
Kapdan IK, Kargi F. (2006) Biohydrogen production from waste materials. Enzyme Microbiology Technolgy, 38: 569-582
Kessler E. (1974) Hydrogenase, photoreduction, and anaerobic growth. In Stewart WDP (ed). Algal Physiology and Biochemistry. Blackwell, Oxford. pp: 22-30
Korbee N, Figueroa F, Aguilera I. (2005) Effect of light quality on the accumulation of photosynthetic pigments, proteins and mycosporine-like amino acids in the red alga Porphyra leucosticte (Bangiales, Rhodophyta). The Journal of Photochemistry and Photobiology Biology, 80(2): 71–78
Kosourov SN, Seibert M. (2009) Hydrogen photoproduction by nutrient-deprived Chlamydomonas reinhardtii cells immobilized within thin alginate films under aerobic and anaerobic conditions. Biotechnology Bioengineering, 102:50-58
Lim S, Chu W, Phang S. (2010) Use of Chlorella vulgaris for bioremediation of textile wastewater. Bioresource Technology, 101: 7314–7322
Liang Y, Sarkany N, Cui Y. (2009) Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnology Letters, 31(7): 1043-1049.
Lu Q, Zhou W, Min M. (2016) Mitigating ammonia nitrogen deficiency in dairy wastewaters for algae cultivation. Bioresource Technology, 201: 33–40. https://doi.org/ 10.1016/j.biortech.2015.11.029.
Mandal S and Mallick N. (2011) Waste utilization and biodiesel production by the green microalgae Scenedesmus obliquus. Applied Environmental Microbiology, 77: 374–377
Mohsenpour SF, Richards B, Willoughby N. (2012) Spectral conversion of light for enhanced microalgae growth rates and photosynthetic pigment production. Bioresour ceTechnology, 125: 75–81
Ogbonna CJ, Tanaka H. (2000) Light requirement and photosynthetic cell cultivation – development of processes for efficient light utilization in photobioreactors. Institute of Applied Biochemistry. Journal of Applied Phycology, 12 (35): 207-218.
Papazi A, Andronis E, Ioannidis NE, Chaniotakis N, Kotzabasis K (2012) High Yields of Hydrogen Production Induced by Meta-Substituted Dichlorophenols Biodegradation from the Green Alga Scenedesmus obliquus. PLoS ONE, 7(11): e49037. doi:10.1371/journal.pone.0049037
Rashid N, Lee K, Han J, Gross M. (2013) Hydrogen production by immobilized Chlorella vulgaris: optimized pH, carbon source and light. Bioprocess and Biosystems Engineering, 36: 867-872
Ruiz-Marín A, Mendoza-Espinosa LG, Stephenson T. (2010) Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater. Bioresource Technology, 101: 58–64
Tam NFY and Wong YS. (2000) Effect of immobilized microalgal bead concentrations on wastewater nutrient removal. Environmental Pollution, 107 (1): 145 – 151
Wang L, Li Y, Chen P, Min M, Chen Y, Zhu J, Ruan RR. (2010) Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp. Bioresource Technology, 101: 2623-2628.
Publicado
2021-12-27
Sección
Artículos de Investigación