NIVELES DE CONTAMINANTES HAPs, FACTOR DE BIOACUMULACIÓN (BAF) Y BIOTA-SEDIMENTO (BSAF) EN LAGUNA ADYACENTE A UN ÁREA DE PROTECCIÓN DE FLORA Y FAUNA

  • Alejandro Ruiz Marin Universidad Autónoma del Carmen
  • Yunuen Canedo-Lopez
  • Claudia Alejandra Aguilar-Ucan
  • Carlos Montalvo-Romero
  • Juan Gabriel Flores-Trujillo
  • Nancy Perez-Morga
Palabras clave: Hidrocarburos aromáticos policíclicos, Calidad de sedimentos, Cociente de equivalencia tóxica, Factor de bioacumulación, Factor de acumulación Biota-sedimento.

Resumen

Se cuantificaron los HAP en sedimentos y peces comestibles (Megalops atlanticus) de la laguna Caleta (Laguna de Términos, México) para evaluar la toxicidad y bioacumulación de BSAF y BAF. Se colocaron un total de 15 estaciones de muestreo dividido en tres estratos (zona I, II y III) a lo largo de la laguna de Caleta. La parte intermedia (zona II) mostró mayor concentración de HAP de 223.96 ng g-1 dw, mientras que las zonas I y III mostraron HAPs-HMW (629.6 ng g-1 dw y 319.12 ng g-1 dw, respectivamente), lo que sugiere fuente petrogénica y pirolítica. La alta concentración de HAP de LHW (190.3 ng g-1 dwt) en el tejido de los peces indica una mayor disponibilidad en la columna de agua. Los valores del cociente TEQBaP, MEQBaP y ERM mostraron un sedimento con baja probabilidad de ser tóxico. Mientras que los valores de BAF y BSAF sugieren una alta biodisponibilidad de HAP de las zonas de intercambio entre el océano y las aguas residuales urbanas; contribuyendo los derrames accidentales, descarga de aguas residuales y quema de combustible por vehículos.

Citas

Balgobin A, Ramrrop Singh N (2018) Impact of anthropogenic activities on mussel (Mytella guyanensis) in the Gulf of Paria. Trinidad. Mar Pollut Bull 135:496-504. https://doi.org/10.1016/j.marpolbul.2018.07.056.
Balgobin A, Ramrrop Singh N (2019) Source apportionment and seasonal cancer risk of polycyclic aromatic hydrocarbons of sediments in a multi-use coastal environment containing a Ramsar wetland, for a Caribbean island. Science of the Total Environment 664: 474-486
Barakat AO, Mostada A, Wade TL, Sweet ST, Sayed NB (2011) Distribution and characteristics of PAHs in sediments from the Mediterranean coastal environment of Egypt. Mar Pollut Bull 62(9):1969-1978.
Briggs D (1977) Soils: Sources and Methods in Geography, Butter-worths, London, UK.
Canedo-Lopez Y, Ruiz-Marin A, Barreto-Castro MR (2020) Polycyclic aromatic hydrocarbon in surface sediments and fish tissues collected from a protected lagoons region. Bulletin of Environmental Contamination and Toxicology 104: 185-192.
Durant JL, Busby WF, Lafleur AL, Penman BW, Crespi CL (1996) Human cell mutagenic of oxygenated, nitrated and unsubstituted polycyclic aromatic hydrocarbons associated with urban aerosols. Mutat Res-Genet Toxicol 371: 123-157.
EC (2011) Commission Regulation (EU) No.835/2011 of 19 August 2011 amending Regulation (EC) No.1881/2006 as regards maximum levels for polycyclic aromatic hydrocarbons foodstuffs. Official Journal of the European Union. European Union.
El-Deeb KZ, Said TO, El-Naggar MH, Shreadah MA (2007) Distribution and Sources of Aliphatic and Polycyclic Aromatic Hydrocarbons in Surface Sediments, Fish and Bivalves of Abu Qir Bay (Egyptian Mediterranean Sea). Bull Environ Contam Toxicol 78:373-379.
Franco CFJ, de Resende MF, de Almeida Furtado L, Brasil TF, Eberlin MN, Netto ADP (2017) Polycyclic aromatic hidrocarbons (PAHs) in Street dust of Rio de Janeiro and Niteroi, Brazil: particle size distribution, sources and cancer risk assessment. Sci Total Environ 599: 305-313.
Froehner S, Rizzi J, Vieira LM, Sanez J (2018) PAHs in water, sediment and biota in an area with port activities. Archives of Environmental Contamination and Toxicology 75: 236-246.
Guzzella L, Roscioli C, Vigano L (2005) Evaluation of the concentration of HCH. DDT, HCB, PCB and PAH in the sediments along the lower stretch of Hugli estuary, West Bengal, northeast India. Envriron Int 31(14): 523-534
Jiao W, Wang T, Lu Y, Chen W, He Y (2014) Ecological risk of polycyclic hydrocarbons found in coastal sediments along the northern shores of the Bohai Sea (China). Chem Ecol 30(6):501-512
Li J, Dong H, Han B, Li X, Zhu C, Han C, Liu S, Yang D, Xu Q. (2016). Prediction of the bioaccumulation of PAHs in surface sediment of Bohai sea China and quantitative assessment of the related toxicity and health risk to humans. Marine Pollut. Bull 104: 92-100
Liu Y, YU N, Li Z, Wei Y, Ma L, Zhao J (2012) Sedimentary record of PAHs in the Liangtan River and its relation to socioeconomic development of Chongqing, Southwest China. Chemosphere 89: 893-899.
Long ER (2006) Calculation and uses of mean sediment quality guideline quotients: a critical review. Environ Sci Technol 40: 1726-1736.
MacDonald DD, Ingersoll CG, Berger T (2000) Development and evaluation of consensus based sediment quality guidelines for freshwater ecosystems. Archives Environ Contam Toxicol 39: 20-31.
Nielsen K, Kalmykova Y, Stromvall AM, Baun A, Eriksson E (2015) Particle phase distribution of polycyclic aromatic hydrocarbons in stormwater-using humic acid and iron nano-sized colloids as test particles. Sci Total Environ 532: 103-111.
Nisbet ICT, LaGoy PK (1992) Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regul Toxicol Pharmacol 16: 290-300
NOAA (2000). Designated Critical Habitat: Critical Habitat for 19 evolutionarily Significant Units and Salmon and Steelhead in Washington. Oregon, Idaho and California. 64FR 24.pp. 5740-5753.
Qiao M, Wang C, Huang S, Wang Z (2016) Composition sources and potential toxicological significance of PAHs in the surface sediment of the Meilang Bay, Taihu Lake, China Environ Int 32: 28-33.
Rojo-Nieto E, Oliva M, Sales D, Perales JA (2014) Feral finfish and their relation-ships with sediments and seawater, as a tool for risk assessment of PAHs in chronically polluted environments. Sci Total Environ 470-471: 1030-1039.
Ruiz-Marín A, Canedo-López Y, Zavala-Loría JC, García-Sarracino RR, Anguebes-Franseschi F, Córdova-Quiroz AV (2014) Variation on the Fluxes of Nutrients in an Urban Lagoon by Seasonal Effects and Human Activities. Hydrol Current Res 5(2): 1-8. http://dx.doi.org/10.4172/2157-7587.1000170.
Salgado LD, Antonio Ernesto Meister Luz Marques, Rafael Duarte Kramer, Fernando Garrido de Oliveira, Sarah Lott Moretto, Barbara Alves de Lima, Maritana Mela Prodocimo, Marta Margarete Cestari, Júlio Cesar Rodrigues de Azevedo, Helena Cristina Silva de Assis (2019) Integrated assessment of sediment contaminant levels and biological responses in sentinel fish species Atherinella brasiliensis from a subtropical estuary in south Atlantic. Chemosphere 219: 15-27
Torres RJ, Cesar A, Pastor VA, Perreira CDS, Choueri RB, Cortez FS, Morais RD, Abessa DMS, Nascimento MRL, Morais CR, Fadini PD, Del Valle Casillas TA, Mozeto AA (2014) A critical comparison of different approaches to sediment-quality assessments in the Santos estuarine system in Brazil- Arch Environ Contam Toxicol 68: 132-147
Tu YT, Ou JH, Tsang DCW, Dong CD, Chen CW, Kao CM (2018) Source identification and ecological impact evaluation of PAHs in urban river sediments: A case study in Taiwan. Chemosphere 194: 666-674.
US-EPA (2004). The incidence and severity of sediment contamination in surface waters of the United States. National Sediment Quality Survey: Second Edition. Washington D.C.
Yunker MB, Macdonald RW, Vingarzan R, Mitchell RH, Goyette D, Sylvestre S (2002) PAHs in the Fraser River basin: a critical appraisal of PAH rations as indicators of PAH source and compositions. Org Geochem. https://doi.org/10.1016/S0146-6380(02)00002-5.
Zhang D, Liu J, Jiang X, Cao K, Yin P, Zhang X (2016) Distribution sources and ecological risk assessment of PAHs in surface sediments from the Luan River Estuary China. Mar Pollut Bull 102: 223-229.
Publicado
2022-12-16
Sección
Artículos de Investigación