ALAMBRES DE ACERO LOCALES PARA PRODUCIR SFRC: ESTUDIO EXPERIMENTAL A FLEXIÓN

  • Alejandro Meza Tecnologico Nacional de Mexico

Resumen

El concreto reforzado con fibras de acero (SFRC) es un material compuesto, generalmente reforzado con fibras de acero de alta resistencia a la tracción. Sin embargo, la disponibilidad de fibras industriales, producidas por una marca comercial, es escasa en algunas regiones del mundo, lo que agrega un costo adicional al SFRC debido a las tarifas de transporte. Como alternativa a este inconveniente se proponen alambres locales recocidos y galvanizados para reforzar el concreto. Los alambres de acero fueron ondulados y cortados para producir fibras en diferentes longitudes, después mezclados con el concreto en varias dosis de fibras. En el presente trabajo se estudiaron la resistencia a la tensión y el comportamiento superficial de los alambres locales, y se correlacionaron con la trabajabilidad, la resistencia a la flexión y el costo relativo. Los resultados han demostrado una reducción de costos del 60% cuando se utiliza acero local, con un comportamiento a la flexión similar al de fibra industrial, pero con un bajo rendimiento de trabajabilidad de las fibras recocidas. Además, se propuso un modelo constitutivo tri-lineal para evaluar el comportamiento a flexión del SFRC con acero local, con una buena relación con los resultados experimentales.

Citas

Abdallah, S. and Rees, D.W.A. (2019) Comparisons Between Pull-Out Behaviour of Various Hooked-End Fibres in Normal–High Strength Concretes. International Journal of Concrete Structures and Materials, 13(27). https://doi.org/10.1186/s40069-019-0337-0
ACI. Guide to Design of Slabs on Ground. Detroit, MI: Reported by Committee 360 American Concrete Institute, ACI 360R-10; 2010.
Altoubat, S., Roesler, J.R., Lange, D.A., Rieder, K.A. (2008). Simplified method for concrete pavement design with discrete structural fibers. Construction and Building Materials, 22, 384-393. https://doi.org/10.1016/j.conbuildmat.2006.08.008.
ASTM C1018 (2005). Standard test method for flexural toughness and first-crack strength of fiber-reinforced concrete (using beam with third-point loading). West Conshohocken, PA: ASTM International.
ASTM C143 (2000). Standard Test Method for Slump of Hydraulic-Cement Concrete. West Conshohocken, PA: ASTM International.
ASTM C192 (2000). Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory. West Conshohocken, PA, United States: Annual Book of ASTM Standards.
ASTM C293/C293M (2016). Standard Test Method for Flexural Strength of Concrete (Using Simple Beam With Center-Point Loading). West Conshohocken, PA: ASTM International.
ASTM C39/C39M (2018), “Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens”, West Conshohocken (PA): ASTM International.
ASTM C78 (2000). Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading). West Conshohocken, PA, United States, ASTM C78.
Bakhshi, M., Barsby, C., Mobasher, B. (2014). Comparative evaluation of early age toughness parameters in fiber reinforced concrete. Materials and Structures, 47, 853-872. https://doi.org/10.1617/s11527-013-0098-1
Bernard, E.S. (2019) Predicting crack widths in FRC/reinforced concrete members using small deformation post-crack parameters. Structural Concrete, 10(6), 2138-2149. https://doi.org/10.1002/suco.201900083
Bhogayata AC., and Arora NK. (2017) Fresh and strength properties of concrete reinforced with metalized plastic waste fibers. Construction and Building Materials 146 455–463. http://dx.doi.org/10.1016/j.conbuildmat.2017.04.095
Blanco, A., Pujadas, P., de la Fuente, A., Cavalaro, S., Aguado, A. (2013). Application of constitutive models in European codes to RC–FRC. Construction and Building Materials, 40, 246–259. https://doi.org/10.1016/j.conbuildmat.2012.09.096
Borg, R.P., Baldacchino, O., Ferrara, L. (2016). Early age performance and mechanical characteristics of recycled PET fibre reinforced concrete. Construction and Building Materials, 108, 29–47. https://doi.org/10.1016/j.conbuildmat.2016.01.029.
Caggiano A, Folino P., Lima C., Martinelli E., Pepe M. (2017) On the mechanical response of Hybrid Fiber Reinforced Concrete with Recycled and Industrial Steel Fibers. Construction and Building Materials 147 286–295. http://dx.doi.org/10.1016/j.conbuildmat.2017.04.160
Chu, S.H., Li, L.G., Kwan, A.K.H. (2018). Fibre factors governing the fresh and hardened properties of steel FRC. Construction and Building Materials, 186, 1228-1238.
Correal, J.F., Herrán, C.A., Carrillo, J., Reyes, J.C., Hermida, G. (2018). Performance of hybrid fiber-reinforced concrete for low-rise housing with thin walls. Construction and Building Materials, 185, 519-529. https://doi.org/10.1016/j.conbuildmat.2018.07.048.
Daud R.A., Daud S.A., Al-Azzawi A.A. (2020) Tension stiffening evaluation of steel fibre concrete beams with smooth and deformed reinforcement. Journal of King Saud University – Engineering Sciences. https://doi.org/10.1016/j.jksues.2020.03.00
DEACERO (2020). Galvanized and annealed technical sheet. Consulted on December 12th 2020. www.deacero.com
Dramix (2020). “Steel fiber concrete reinforcement for industrial floors[online].” Available from: [Accessed 12 December 2020].
Dvorkin L., Dvorkin O., Zhitkovsky V., Ribakov Y. (2011) A method for optimal design of steel fiber reinforced concrete composition. Materials and Design 32, 3254–3262. doi:10.1016/j.matdes.2011.02.036
Emon, M.A.B., Manzur, T., Sharif, M.S. (2017). Suitability of locally manufactured galvanized iron (GI) wire fiber as reinforcing fiber in brick chip concrete. Case Studies in Construction Materials, 7, 217-227.
Fantilli A.P., Kwon S., Mihashi H., Nishiwaki T. (2018) Synergy assessment in hybrid Ultra-High Performance FiberReinforced Concrete (UHP-FRC). Cement and Concrete Composites 86, pp. 19-29. https://doi.org/10.1016/j.cemconcomp.2017.10.012
Fu C., Ye H., Wang K., Zhu K., He C., (2019) Evolution of mechanical properties of steel fiber-reinforced rubberized concrete (FR-RC). Composites Part B: Engineering 160, 158-166. https://doi.org/10.1016/j.compositesb.2018.10.045
Gelfi, M., Solazzi, L., Poli, S. (2017). Influence of the Manufacturing Process on Defects in the Galvanized Coating of High Carbon Steel Wires. Materials, 10(3), 264-276. https://doi.org/10.3390/ma10030264.
Hongbo A., Haiyun A., Hongxiang G. (2020) Characteristics of ductility enhancement of concrete by a macro polypropylene fiber. Materials, 100087. https://doi.org/10.1016/j.rinma.2020.100087
Iqbal S., Ali I., Room S., Khan S.A., Ali A. (2019) Enhanced mechanical properties of fiber reinforced concrete using closed steel fibers. Materials and Structures, 52:56. https://doi.org/10.1617/s11527-019-1357-6
Jangid A., Sharma A. (2020) Experimental study on the properties of steel fibre reinforced concrete. Indian Journal of Engineering, 17(47), 151-163.
JSCE-SF4 (1984). Standard for flexural strength and flexural toughness, method of tests for steel fiber reinforced concrete. Japan Concrete Institute, Concrete library of JSCE.
Kaur, G., Singh, S.P., Kaushik, S.K. (2012). Flexural performance of fibrous concrete with cement additions. Construction Materials, 167, 14-25.
Marar K., Eren Ö, Roughani H. (2017) The influence of amount and aspect ratio of fibers on shear behaviour of steel fiber reinforced concrete. KSCE Journal of Civil Engineering 21, 1393–1399.
Meda A., Minelli F., Plizzari G.A. (2012) Flexural behaviour of RC beams in fibre reinforced concrete. Composites: Part B, 43 pp. 2930–2937. http://dx.doi.org/10.1016/j.compositesb.2012.06.003
Meza, A. (2015). Optimización del concreto reforzado con fibras de acero y polipropileno en pisos industriales, basado en análisis experimental y numérico (doctoral thesis). Universidad Autónoma de Aguascalientes, Aguascalientes, Ags., México.
Meza, A., Ahmed, F.U. (2020) Anisotropy and bond behaviour of recycled Polyethylene terephthalate (PET) fibre as concrete reinforcement. Construction and Building Materials 265 (2020) 120331. https://doi.org/10.1016/j.conbuildmat.2020.120331
Meza, A., Ortiz, J.A., Peralta, L., Pacheco, J., Soto, J.J. (2014). Experimental mechanical characterization of steel and polypropylene fiber reinforced concrete. Revista Técnica Facultad Ingeniería Universidad Zulia, 37, 106-115.
Pajak M. (2019) Concrete reinforced with various amounts of steel fibers reclaimed from end-of-life tires. MATEC Web of Conferences 262, 06008.
Pakravan H.R., Ozbakkaloglu T. (2019) Synthetic fibers for cementitious composites: A critical and in-depth review of recent advances. Construction and Building Materials 207, pp. 491–518. https://doi.org/10.1016/j.conbuildmat.2019.02.078
Ragalwar K., Heard W.F., Williams B.A., Kumar D., Ranade R. (2020) On enhancing the mechanical behavior of ultra-high performance concrete through multi-scale fiber reinforcement. Cement and Concrete Composites 105, 103422. https://doi.org/10.1016/j.cemconcomp.2019.103422
Sabapathy Y.K., Sabarish, S., Nithish, C.N.A, Ramasamy S.M., Krishna G. (2019) Experimental study on strength properties of aluminium fibre reinforced concrete. Journal of King Saud University – Engineering Sciences. https://doi.org/10.1016/j.jksues.2019.12.004
Soutsos, M.N., Le, T.T., Lampropoulos, A.P. (2012). Flexural performance of fibre reinforced concrete made with steel and synthetic fibres. Construction and Building Materials, 36, 704–710. https://doi.org/10.1016/j.conbuildmat.2012.06.042.
Turno, J., Banthia, N., Gettu, R., Barragán, B. (2008). Study of the shear behaviour of fibre reinforced concrete beams. Materiales de Construcción, 58, 5-13. https://doi.org/10.3989/mc.2008.40507.
Woo SK, Kim KJ, Han SH (2014) Tensile cracking constitutive model of Steel Fiber Reinforced Concrete (SFRC). KSCE Journal of Civil Engineering 18:1446–1454.
Yang, C.C., Liu, C.L. (2016). Improvement of the Mechanical Properties of 1022 Carbon Steel Coil by Using the Taguchi Method to Optimize Spheroidized Annealing Conditions. Materials, 9, 693-702. https://doi.org/10.3390/ma9080693.
Yang, Y.S., Bae, J.G., Park, C.G. (2008). Improvement of the bending fatigue resistance of the hyper-eutectoid steel wires used for tire cords by a post-processing annealing. Materials Science and Engineering: A, 488, 554-561. https://doi.org/10.1016/j.msea.2007.11.048
Yoo, D.Y., & Banthia, N. (2017). Experimental and numerical analysis of the flexural response of amorphous metallic fiber reinforced concrete. Materials and Structures, 50, 50-64. https://doi.org/10.1617/s11527-016-0899-0.
Zhong H., Zhang M. (2020) Experimental study on engineering properties of concrete reinforced with hybrid recycled tyre steel and polypropylene fibres. Journal of Cleaner Production, 259(20) 120914. DOI: 10.1016/j.jclepro.2020.120914
Publicado
2023-12-06
Sección
Artículos de Investigación