Análisis Multicriterio Para la Ubicación Óptima de Reconectadores en Sistemas de Distribucióm

  • Christian Javier Yacche propia
  • Alexander Aguila
Palabras clave: Índices de Confiabilidad, Montecarlo, Sistemas de Distribución

Resumen

El presente estudio plantea una estrategia capaz de optimizar la ubicación de reconectadores dentro de una red eléctrica de distribución, considerando los indicadores de confiabilidad SAIDI, CAIFI, SAIFI, AENS como criterios de decisión. Los datos iniciales de tasas de fallas y tiempos de interrupción y duración de reparación del caso de estudio son aleatorios, a través de ´estos indicadores, se obtiene la matriz de decisión que permite escoger la opción que minimiza la mayor cantidad de índices de fiabilidad. Las topologías de red determinan la cantidad de reconectadores a ser instalados, sin embargo, la estrategia es escalable, y puede ser utilizada en redes mucho más grandes. Además, se puede implementar en redes en donde las variables iniciales sean conocidas.

Citas

[1] S. Abdi, K. Afshar, S. Ahmadi, N. Bigdeli, M. Abdi, Optimal recloser and autosectionalizer allocation in
distribution networks using IPSO-Monte Carlo approach, International Journal of Electrical Power and Energy
Systems 55 (2014) 602–611. doi:10.1016/j.ijepes.2013.10.012.
[2] A. Alam, V. Pant, B. Das, Switch and recloser placement in distribution system considering uncertainties in
loads, failure rates and repair rates, Electric Power Systems Research 140 (2016) 619–630. doi:10.1016/j.
epsr.2016.05.012.
URL http://dx.doi.org/10.1016/j.epsr.2016.05.012
[3] A. ´Alzate, O. D. Montoya, R. A. Hincapi´e, M. Granada, Optimal location of reclosers in distribution systems
considering reliability in communication channels, 2015 IEEE 6th Latin American Symposium on Circuits and
Systems, LASCAS 2015 - Conference Proceedings (2015) 2–5doi:10.1109/LASCAS.2015.7250487.
[4] M. Amohadi, M. Fotuhi-Firuzabad, Optimal placement of switching and protection devices in radial distribution
networks to enhance system reliability using the AHP-PSO method, Turkish Journal of Electrical Engineering
and Computer Sciences 27 (1) (2019) 181–196. doi:10.3906/elk-1806-130.
[5] L. G. Da Silva, R. A. Pereira, J. R. Mantovani, Allocation of protective devices in distribution circuits using
nonlinear programming models and genetic algorithms, Electric Power Systems Research 69 (1) (2004) 77–84.
doi:10.1016/j.epsr.2003.08.010.
[6] J. S. Farkhani, A. Najafi, M. Zareein, R. Godina, E. M. Rodrigues, Impact of recloser on protecting blind areas
of distribution network in the presence of distributed generation, Applied Sciences (Switzerland) 9 (23) (2019).
doi:10.3390/app9235092.
[7] Z. Galias, Tree-Structure Based Deterministic Algorithms for Optimal Switch Placement in Radial Distribution
Networks, IEEE Transactions on Power Systems 34 (6) (2019) 4269–4278. doi:10.1109/TPWRS.2019.2909836.
[8] A. Ghulomzoda, A. Gulakhmadov, A. Fishov, M. Safaraliev, X. Chen, K. Rasulzoda, K. Gulyamov, J. Ahyoev,
Recloser-based decentralized control of the grid with distributed generation in the Lahsh district of the Rasht
grid in Tajikistan, central Asia, Energies 13 (14) (2020). doi:10.3390/en13143673.
[9] L. F. Grisales, O. D. Montoya, A. Grajales, R. A. Hincapie, M. Granada, Optimal Planning and Operation of
Distribution Systems Considering Distributed Energy Resources and Automatic Reclosers, IEEE Latin America
Transactions 16 (1) (2018) 126–134. doi:10.1109/TLA.2018.8291464.
[10] F. G. Guarda, G. Cardoso Junior, A. P. De Morais, U. H. Bezerra, J. P. Vieira, Hybrid Method for Protective
Devices Placement, Sizing and Coordination in Electric Distribution Systems, IEEE Latin America
Transactions 15 (2) (2017) 257–262. doi:10.1109/TLA.2017.7854620.
[11] M. Jooshaki, A. Abbaspour, M. Fotuhi-Firuzabad, G. Mu˜noz-Delgado, J. Contreras, M. Lehtonen, J. M. Arroyo,
Linear Formulations for Topology-Variable-Based Distribution System Reliability Assessment Considering
Switching Interruptions, IEEE Transactions on Smart Grid 11 (5) (2020) 4032–4043. doi:10.1109/TSG.2020.
2991661.
[12] S. Ray, S. Bhattacharjee, A. Bhattacharya, Optimal allocation of remote control switches in radial distribution
network for reliability improvement, Ain Shams Engineering Journal 9 (3) (2018) 403–414. doi:10.1016/j.
asej.2016.01.001.
[13] F. M. Rodrigues, L. R. de Araujo, D. R. R. Penido, Improvement of Reliability Indices and Costs in Distribution
Systems Considering Multiple Scenarios Through Switch Reallocation, Journal of Control, Automation and
Electrical Systems 31 (6) (2020) 1508–1519. doi:10.1007/s40313-020-00652-2.
URL https://doi.org/10.1007/s40313-020-00652-2
[14] A. Alam, V. Pant, B. Das, Optimal placement of protective devices and switches in a radial distribution
system with distributed generation, IET Generation, Transmission and Distribution 14 (21) (2020) 4847–4858.
doi:10.1049/iet-gtd.2019.1945.
9
[15] A. Heidari, V. G. Agelidis, M. Kia, J. Pou, J. Aghaei, M. Shafie-Khah, J. P. Catalao, Reliability Optimization
of Automated Distribution Networks with Probability Customer Interruption Cost Model in the Presence of
DG Units, IEEE Transactions on Smart Grid 8 (1) (2017) 305–315. doi:10.1109/TSG.2016.2609681.
[16] L. Ortiz, R. Orizondo, A. ´ Aguila, J. W. Gonz´alez, G. J. L´opez, I. Isaac, Hybrid AC/DC microgrid test system
simulation: grid-connected mode, Heliyon 5 (12) (2019). doi:10.1016/j.heliyon.2019.e02862.
[17] J. Vasco, A. Aguila, Design of Automatic Reclosing scheme in distribution feeders, IEEE Latin America
Transactions 13 (8) (2015) 2587–2593. doi:10.1109/TLA.2015.7332136.
[18] A. ´Aguila, L. Ortiz, R. Orizondo, G. L´opez, Optimal Location and Dimensioning of Capacitors in Microgrids
Using a Multicriteria Decision Algorithm, Heliyon 7 (9) (2021). doi:10.1016/j.heliyon.2021.e08061.
Publicado
2024-11-27
Sección
Artículos de Investigación