Cristales fotónicos unidimensionales y bisimensionales
realidades y perspectivas en la ingeniería de la luz
Resumen
Este artículo divulgativo pretende dar a conocer algunas características y aplicaciones de las llamadas heteroestructuras fotónicas, estructuras artificiales fabricadas con el propósito de controlar y moldear la propagaci´on de la luz a trav´es de las mismas. Además, se quieren presentar algunos resultados del trabajo de nuestro grupo en el diseño y simulación de propiedades buscadas teniendo en cuenta los materiales usados en estos dispositivos y los fenómenos que se presentan para cada caso, junto con sus posibles aplicaciones en la ingeniería.
Citas
Second Edition, rev - revised, 2 Edition, Princeton University Press, 2008.
URL http://www.jstor.org/stable/j.ctvcm4gz9
[2] E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics, Phys. Rev. Lett. 58
(1987) 2059–2062. doi:10.1103/PhysRevLett.58.2059.
URL https://link.aps.org/doi/10.1103/PhysRevLett.58.2059
[3] S. John, Strong localization of photons in certain disordered dielectric superlattices, Phys. Rev. Lett. 58 (1987)
2486–2489. doi:10.1103/PhysRevLett.58.2486.
URL https://link.aps.org/doi/10.1103/PhysRevLett.58.2486
[4] R. Lipson, C. Lu, Photonic crystals: A unique partnership between light and matter, EUROPEAN JOURNAL
OF PHYSICS Eur. J. Phys 30 (2009) 33–48. doi:10.1088/0143-0807/30/4/S04.
10[5] E. Yablonovitch, T. J. Gmitter, K. M. Leung, Photonic band structure: The face-centered-cubic case employing
nonspherical atoms, Phys. Rev. Lett. 67 (1991) 2295–2298. doi:10.1103/PhysRevLett.67.2295.
URL https://link.aps.org/doi/10.1103/PhysRevLett.67.2295
[6] E. Yablonovitch, Photonic crystals : What’s in a name?, Optics & Photonics News 18 (2007) 12–13.
URL https://api.semanticscholar.org/CorpusID:124873561
[7] D. Shechtman, I. Blech, D. Gratias, J. W. Cahn, Metallic phase with long-range orientational order and no
translational symmetry, Phys. Rev. Lett. 53 (1984) 1951–1953. doi:10.1103/PhysRevLett.53.1951.
URL https://link.aps.org/doi/10.1103/PhysRevLett.53.1951
[8] A. Starczewska, M. Kepinska, Photonic crystal structures for photovoltaic applications, Materials 17 (5) (2024).
doi:10.3390/ma17051196.
URL https://www.mdpi.com/1996-1944/17/5/1196
[9] Y. Li, H. Xin, Y. Zhang, B. Li, Optical fiber technologies for nanomanipulation and biodetection: A review,
Journal of Lightwave Technology PP (2020) 1–1. doi:10.1109/JLT.2020.3023456.
[10] S. Ha, A. Sukhorukov, K. Dossou, L. Botten, C. Sterke, Y. Kivshar, Bloch-mode extraction from near-field
data in periodic waveguides, Optics letters 34 (2009) 3776–8. doi:10.1364/OL.34.003776.
[11] M. W. Ashraf, M. Faryad, On the mapping of dirac-like cone dispersion in dielectric photonic crystals to an
effective zero-index medium, J. Opt. Soc. Am. B 33 (6) (2016) 1008–1013. doi:10.1364/JOSAB.33.001008.
URL https://opg.optica.org/josab/abstract.cfm?URI=josab-33-6-1008
[12] L. Vertchenko, C. DeVault, R. Malureanu, E. Mazur, A. Lavrinenko, Near-zero index photonic crystals
with directive bound states in the continuum, Laser & Photonics Reviews 15 (7) (2021) 2000559. arXiv:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/lpor.202000559, doi:https://doi.org/10.1002/
lpor.202000559.
URL https://onlinelibrary.wiley.com/doi/abs/10.1002/lpor.202000559
[13] S. Iwamoto, S. Takahashi, T. Tajiri, Y. Arakawa, Semiconductor three-dimensional photonic crystals with novel
layer-by-layer structures, Photonics 3 (2) (2016). doi:10.3390/photonics3020034.
URL https://www.mdpi.com/2304-6732/3/2/34
[14] J. Escorcia-Garc´ıa, D. Becerra-Garc´ıa, M. E. Mora-Ramos, Spatial localization of electromagnetic modes in
noise-like random one-dimensional dielectric heterostructures, J. Opt. Soc. Am. B 34 (2) (2017) 507–515.
doi:10.1364/JOSAB.34.000507.
URL https://opg.optica.org/josab/abstract.cfm?URI=josab-34-2-507
[15] M. Bellingeri, A. Chiasera, I. Kriegel, F. Scotognella, Optical properties of periodic, quasi-periodic, and disordered one-dimensional photonic structures, Optical Materials 72 (2017) 403–421. doi:https://doi.org/10.
1016/j.optmat.2017.06.033.
URL https://www.sciencedirect.com/science/article/pii/S0925346717304123
[16] P. Yeh, A. Yariv, C.-S. Hong, Electromagnetic propagation in periodic stratified media. i. general theory∗, J.
Opt. Soc. Am. 67 (4) (1977) 423–438. doi:10.1364/JOSA.67.000423.
URL https://opg.optica.org/abstract.cfm?URI=josa-67-4-423
[17] F. Qiu, R. W. Peng, X. Q. Huang, X. F. Hu, M. Wang, A. Hu, S. S. Jiang, D. Feng, Omnidirectional reflection
of electromagnetic waves on thue-morse dielectric multilayers, Europhys. Lett. 68 (5) (2004) 658–663. doi:
10.1209/epl/i2004-10261-y.
[18] H.-F. Zhang, S.-B. Liu, X.-K. Kong, Enlarged omnidirectional band gap in one-dimensional plasma photonic
crystals with ternary thue–morse aperiodic structure, Physica B: Condensed Matter 410 (2013) 244–250. doi:
https://doi.org/10.1016/j.physb.2012.10.025.
[19] H. Rahimi, Analysis of photonic spectra in thue-morse, double-period and rudin-shapiro quasiregular structures
made of high temperature superconductors in visible range, Optical Materials 57 (2016) 264–271. doi:https:
//doi.org/10.1016/j.optmat.2016.04.022.
11[20] C. Yue, W. Tan, J. Liu, Photonic band gap properties of one-dimensional thue-morse all-dielectric photonic
quasicrystal, Superlattices and Microstructures 117 (2018) 252–259. doi:https://doi.org/10.1016/j.spmi.
2018.03.023.
URL https://www.sciencedirect.com/science/article/pii/S0749603618302817
[21] L. Moretti, I. Rea, L. Rotiroti, I. Rendina, G. Abbate, A. Marino, L. De Stefano, Photonic band gaps analysis
of thue-morse multilayers made of porous silicon, Opt. Express 14 (13) (2006) 6264–6272. doi:10.1364/OE.
14.006264.
[22] M. Golay, Static multislit spectromety and its application to the panoramic display of infrared spectra, J. Opt.
Soc. America 41 (1951) 468–472.
[23] W. Rudin, Some theorems on fourier coefficients, Proc. Amer. Math. Soc. 10 (1959) 855–859.
[24] H. Shapiro, Extremal problems for polynomials and power series, Master’s thesis, MIT (1951).
[25] V. Agarwal, M. E. Mora-Ramos, B. Alvarado-Tenorio, Optical properties of multilayered period-doubling and
rudin-shapiro porous silicon dielectric heterostructures, Photonics and Nanostructures - Fundamentals and
Applications 7 (2) (2009) 63–68. doi:https://doi.org/10.1016/j.photonics.2008.11.001.
[26] J. E. Baker, R. Sriram, B. L. Miller, Two-dimensional photonic crystals for sensitive microscale chemical and
biochemical sensing, Lab Chip 15 (2015) 971–990. doi:10.1039/C4LC01208A.
URL http://dx.doi.org/10.1039/C4LC01208A
[27] C. Kyaw, R. Yahiaoui, Z. A. Chase, V. Tran, A. Baydin, F. Tay, J. Kono, M. Manjappa, R. Singh, D. C.
Abeysinghe, A. M. Urbas, T. A. Searles, Guided mode resonances in flexible 2d thz photonic crystals (2020).
arXiv:2001.05038.
URL https://arxiv.org/abs/2001.05038
[28] S. Robinson, R. Nakkeeran, Photonic crystal ring resonator based optical filters, in: V. M. Passaro (Ed.),
Advances in Photonic Crystals, IntechOpen, Rijeka, 2013, Ch. 1. doi:10.5772/54533.
URL https://doi.org/10.5772/54533
[29] I. S. Panyaev, D. G. Sannikov, N. N. Dadoenkova, Y. S. Dadoenkova, Energy flux optimization in 1d
multiperiodic four-component photonic crystals, Optics Communications 489 (2021) 126875. doi:https:
//doi.org/10.1016/j.optcom.2021.126875.
URL https://www.sciencedirect.com/science/article/pii/S0030401821001255
[30] D. L. Wood, K. Nassau, Refractive index of cubic zirconia stabilized with yttria, Appl. Opt. 21 (16) (1982)
2978–2981. doi:10.1364/AO.21.002978.
URL https://opg.optica.org/ao/abstract.cfm?URI=ao-21-16-2978
[31] L. Gao, F. Lemarchand, M. Lequime, Exploitation of multiple incidences spectrometric measurements for thin
film reverse engineering, Opt. Express 20 (14) (2012) 15734–15751. doi:10.1364/OE.20.015734.
URL https://opg.optica.org/oe/abstract.cfm?URI=oe-20-14-15734
[32] T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, I. Ohl´ıdal, A. Szeghalmi, E.-B. Kley,
A. T¨unnermann, Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet
spectral range, Advanced Optical Materials 4 (11) (2016) 1780–1786. arXiv:https://onlinelibrary.wiley.
com/doi/pdf/10.1002/adom.201600250, doi:https://doi.org/10.1002/adom.201600250.
URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adom.201600250
[33] M. A. Tun-Carrillo, Estudio de la propagaci´on de la luz en heteroestructuras basadas en multicapas de ´oxidos
met´alicos, Master’s thesis, Universidad Aut´onoma del Estado de Morelos (2023).
URL http://riaa.uaem.mx/handle/20.500.12055/4124
[34] K. Yee, Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media,
IEEE Transactions on Antennas and Propagation 14 (3) (1966) 302–307. doi:10.1109/TAP.1966.1138693.
[35] A. Taflove, Application of the finite-difference time-domain method to sinusoidal steady-state electromagneticpenetration problems, IEEE Transactions on Electromagnetic Compatibility EMC-22 (3) (1980) 191–202. doi:
10.1109/TEMC.1980.303879.
12[36] K. Okamoto, Chapter 7 - beam propagation method, in: K. Okamoto (Ed.), Fundamentals of Optical Waveguides (Second Edition), second edition Edition, Academic Press, Burlington, 2006, pp. 329–397. doi:https:
//doi.org/10.1016/B978-012525096-2/50008-8.
URL https://www.sciencedirect.com/science/article/pii/B9780125250962500088
[37] K. M. Abohassan, H. S. Ashour, M. M. Abadla, A 1d binary photonic crystal sensor for detecting fat concentrations in commercial milk, RSC Adv. 11 (2021) 12058–12065. doi:10.1039/D1RA00955A.
URL http://dx.doi.org/10.1039/D1RA00955A
[38] F. Wen, S. David, X. Checoury, M. E. Kurdi, P. Boucaud, Two-dimensional photonic crystals with large
complete photonic band gaps in both te and tm polarizations, Opt. Express 16 (16) (2008) 12278–12289.
doi:10.1364/OE.16.012278.
URL https://opg.optica.org/oe/abstract.cfm?URI=oe-16-16-12278

Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.
Avisos de derechos de autor propuestos por Creative Commons
1. Política propuesta para revistas que ofrecen acceso abierto
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes:
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de reconocimiento de Creative Commons que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).