Efectos del recocido de películas delgadas de Sb2Se3 en atmósfera Ar+CHClF2: morfología y estequiometría

Palabras clave: Antimony selenide, solar cells, thin film, annealing

Resumen

In this paper, the results of annealing of Sb2Se3 thin films in an Ar-CHClF2 atmosphere are presented. As a first step, a low-cost system was designed and builted to perform the thin film annealing and study its changes in morphology and stoichiometry. The Sb2Se3 films have been deposited by using Close-Spaced-Sublimation (CSS) technique. The formation of new structures at the grain boundaries and the formation of cubic crystals on the surface were observed. EDS analysis indicates that these new structures are enriched in Se. The Sb2Se3 thin films were deposited on glass and, by using the proposed annealing, have potential application in the fabrication of solar cells.

Citas

Al-Obeidi, A. H. H., & Al-Maiyaly, B. K. H. (2023). Effect of thermal annealing on the structural and optical properties of Sb2Se3thin films. AIP Conference Proceedings, 2593. https://doi.org/10.1063/5.0123125
Bosio, A., Foti, G., Pasini, S., & Spoltore, D. (2023). A Review on the Fundamental Properties of Sb2Se3-Based Thin Film Solar Cells. In Energies (Vol. 16, Issue 19). https://doi.org/10.3390/en16196862
Chen, C., Bobela, D. C., Yang, Y., Lu, S., Zeng, K., Ge, C., Yang, B., Gao, L., Zhao, Y., Beard, M. C., & Tang, J. (2017). Characterization of basic physical properties of Sb2Se3 and its relevance for photovoltaics. Frontiers of Optoelectronics, 10(1). https://doi.org/10.1007/s12200-017-0702-z
Chopra, K. L., Paulson, P. D., & Dutta, V. (2004). Thin-film solar cells: an overview. Progress in Photovoltaics: Research and Applications, 12(2–3), 69–92. https://doi.org/https://doi.org/10.1002/pip.541
Collí-Godoy, I. (2024). Propiedades optoelectrónicas de películas delgadas de Sb2Se3 recocidas a diversas temperaturas para aplicación en celdas solares [Tesis de Maestría]. Tecnológico Nacional de México/Instituto Tecnológico de Mérida.
Corning Incorporated. (2023). PYREX® and Corning® Glass and Reusable Plastic Product Selection Guide. In Datasheet (Issue CLS-GL-001 REV14).
Duan, Z., Liang, X., Feng, Y., Ma, H., Liang, B., Wang, Y., Luo, S., Wang, S., Schropp, R. E. I., Mai, Y., & Li, Z. (2022). Sb2Se3 Thin-Film Solar Cells Exceeding 10% Power Conversion Efficiency Enabled by Injection Vapor Deposition Technology. Advanced Materials, 34(30). https://doi.org/10.1002/adma.202202969
ElKhamisy, K., Abdelhamid, H., El-Rabaie, E.-S. M., & Abdel-Salam, N. (2024). A Comprehensive Survey of Silicon Thin-film Solar Cell: Challenges and Novel Trends. Plasmonics, 19(1), 1–20. https://doi.org/10.1007/s11468-023-01905-x
Escalante-Paredes, M. F. (2024). Propiedades morfológicas y estequiométricas de películas delgadas de Sb2Se3 obtenidas por el método CSS (Closed Spaced Sublimation) para aplicación en celdas solares [Maestría]. Tecnológico Nacional de México/ Instituto tecnológico de Mérida.
Kim, S., Lee, S., Park, J., Kim, S., & Kim, Y. (2022). Influence of Annealing Temperature on Crystal Orientation of Electrodeposited Sb2Se3 Thin-Film Photovoltaic Absorbers. Korean Journal of Materials Research, 32(5). https://doi.org/10.3740/MRSK.2022.32.5.243
Kumar, V., Artegiani, E., Kumar, A., Mariotto, G., Piccinelli, F., & Romeo, A. (2019). Effects of post-deposition annealing and copper inclusion in superstrate Sb2Se3 based solar cells by thermal evaporation. Solar Energy, 193, 452–457. https://doi.org/https://doi.org/10.1016/j.solener.2019.09.069
Leng, M., Luo, M., Chen, C., Qin, S., Chen, J., Zhong, J., & Tang, J. (2014). Selenization of Sb2Se3 absorber layer: An efficient step to improve device performance of CdS/Sb2Se3 solar cells. Applied Physics Letters, 105(8). https://doi.org/10.1063/1.4894170
Li, G. L., Tatsumi, I., Yoshihiko, M. O., & Yusaku, T. (1996). Catalytic decomposition of HCFC22 (CHClF2). Applied Catalysis B: Environmental, 9(1–4). https://doi.org/10.1016/0926-3373(96)90084-3
Li, Z., Liang, X., Li, G., Liu, H., Zhang, H., Guo, J., Chen, J., Shen, K., San, X., Yu, W., Schropp, R. E. I., & Mai, Y. (2019). 9.2%-efficient core-shell structured antimony selenide nanorod array solar cells. Nature Communications, 10(1). https://doi.org/10.1038/s41467-018-07903-6
Luo, M., Leng, M., Liu, X., Chen, J., Chen, C., Qin, S., & Tang, J. (2014). Thermal evaporation and characterization of superstrate CdS/Sb 2Se3 solar cells. Applied Physics Letters, 104(17). https://doi.org/10.1063/1.4874878
Mavlonov, A., Razykov, T., Raziq, F., Gan, J., Chantana, J., Kawano, Y., Nishimura, T., Wei, H., Zakutayev, A., Minemoto, T., Zu, X., Li, S., & Qiao, L. (2020). A review of Sb2Se3 photovoltaic absorber materials and thin-film solar cells. In Solar Energy (Vol. 201). https://doi.org/10.1016/j.solener.2020.03.009
Neville, R. C. (1995). Solar Energy Conversion. The Solar Cell (2nd ed.). Elsevier Science.
Phillips, L., Yates, P., Hutter, O., Baines, T., Bowen, L., Durose, K., & Major, J. (2017). Close-Spaced Sublimation for Sb2Se3 Solar Cells.
Razykov, T. M., Shukurov, A. X., Atabayev, O. K., Kuchkarov, K. M., Ergashev, B., & Mavlonov, A. A. (2018). Growth and characterization of Sb2Se3 thin films for solar cells. Solar Energy, 173. https://doi.org/10.1016/j.solener.2018.07.082
Rios-Flores, A., Arés, O., Camacho, J. M., Rejon, V., & Peña, J. L. (2012). Procedure to obtain higher than 14% efficient thin film CdS/CdTe solar cells activated with HCF 2Cl gas. Solar Energy, 86(2). https://doi.org/10.1016/j.solener.2011.12.002
Vadakkedath Gopi, S., Spalatu, N., Basnayaka, M., Krautmann, R., Katerski, A., Josepson, R., Grzibovskis, R., Vembris, A., Krunks, M., & Oja Acik, I. (2023). Post deposition annealing effect on properties of CdS films and its impact on CdS/Sb2Se3 solar cells performance. Frontiers in Energy Research, 11. https://www.frontiersin.org/journals/energy-research/articles/10.3389/fenrg.2023.1162576
Wen, X., Chen, C., Lu, S., Li, K., Kondrotas, R., Zhao, Y., Chen, W., Gao, L., Wang, C., Zhang, J., Niu, G., & Tang, J. (2018). Vapor transport deposition of antimony selenide thin film solar cells with 7.6% efficiency. Nature Communications, 9(1). https://doi.org/10.1038/s41467-018-04634-6
Zhang, L., Wu, K., Yu, J., Yu, Y., & Wei, Y. (2021). Sb2Se3 films fabricated by thermal evaporation and post annealing. Vacuum, 183, 109840. https://doi.org/https://doi.org/10.1016/j.vacuum.2020.109840
Zhou, Y., Wang, L., Chen, S., Qin, S., Liu, X., Chen, J., Xue, D. J., Luo, M., Cao, Y., Cheng, Y., Sargent, E. H., & Tang, J. (2015). Thin-film Sb2Se3 photovoltaics with oriented one-dimensional ribbons and benign grain boundaries. Nature Photonics, 9(6). https://doi.org/10.1038/nphoton.2015.78
Publicado
2025-06-24
Sección
Artículos de Investigación