Cálculo de fuerzas electrostáticas entre objetos volumétricos regulares mediante integración Montecarlo

  • Irma Rosa Martín Medina
  • Gabriela Rivadeneyra
  • Jorge Medina-García
  • César Cab

Abstract

In this work we present a numerical study of the electrostatic force between pairs of bodies with uniform electric charge, of regular volume and shape, specifically circular cone, circular cylinder and sphere, with arbitrary orientations. In order to optimize the numerical calculation, we implement a Monte Carlo integration model to estimate the force between continuous charge distributions and compare it with the model of point charges located at the centroids. The experimental design varies  the distance between the centroids in a wide range (0 to 10 m) and  the volume ratio  (0.25 a 10), considering the total charge equal . We report the force magnitude, the ratio of the force to the point force, the percentage error of the angle between the forces and the relative vector error against the point charges reference. Results are discussed for four object pairs: sphere-sphere, sphere-cylinder, sphere-cone, and cylinder-cone. Relative vector errors approaching 10% are obtained for close distances for object pairs containing the cylinder and the cone. The sphere–sphere pair reports practically identical results compared to the case of point charges. The results are discussed using a multipole approach.

References

Banerjee, S., Peters, T., Brown, N. and Song, Y. (2021). Exact closed-form and asymptotic expressions for the electrostatic force between two conducting spheres. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 477, 1-31. https://doi.org/10.1098/rspa.2020.0866
Batle, J., Ciftja O., Naseri, M., Ghoranneviss, M., Nagata, K. and Nakamura, T. (2017) Coulomb self-energy integral of a uniformly charged D-cube: A physically-based method for approximating multiple integrals. Journal of Electrostatics, 85, 52–60. https://doi:10.1016/j.elstat.2016.12.008
Ciftja, O. (2019). Electrostatic interaction energy between two coaxial parallel uniformly charged disks. Results in Physics, 15, 1-4. https://doi.org/10.1016/j.rinp.2019.102684
Nacional Institute of Standards and Technology, (2019): CODATA recommended values of the fundamental physical constants: 2018. https://physics.nist.gov/cuu/pdf/wall_2018.pdf
Griffiths, D. (2023). Introduction to Electrodynamics. (5 ed.) Reed College, Oregon. Cambridge University Press.
Devroye, L. (1986). Discrete Random Variates. En Non-Uniform Random Variate Generation, Chapter 23. (pp. 83-116). New York, United States of America. Springer-Verlag. https://www.cs.fsu.edu/~mascagni/Devroye.pdf
Fukuda, I. and Nakamura, H. (2022) Non-ewald methods for evaluating the electrostatic interactions of charge systems: Similarity and difference. Biophysical Reviews, 14(6), 1315–1340. https://doi:10.1007/s12551-022-01029-2
Fulcher, L. P. (1986). Improved result for the accuracy of Coulomb’s law: A review of the Williams, Faller, and Hill experiment. Physical Review A. 33(1), 759-761. https://doi.org/10.1103/PhysRevA.33.759
Goldhaber, A. S., & Nieto, M. M. (2010). Photon and graviton mass limits. Reviews of Modern Physics. 82(1), 939-979. https://doi.org/10.1103/RevModPhys.82.939
Khair, A.S. (2013) Electrostatic forces on two almost touching nonspherical charged conductors. Journal of Applied Physics, 114(13). https://doi:10.1063/1.4824540
Lekner, J. (2012). Electrostatics of two charged conducting spheres. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 468(2145), 2829-2848. https://doi.org/10.1098/rspa.2012.0133
Marsaglia, G. (1972). Choosing a Point from the Surface of a Sphere. The Annals of Mathematical Statistics, 43(2), 645–646. https://doi.org/10.1214/aoms/1177692644
Plimpton, S. J., & Lawton, W. E. (1936). A Very Accurate Test of Coulomb's Law of Force Between Charges. Physical Review Journals Archive, 50, 1066-1072. https://doi.org/10.1103/PhysRev.50.1066
Ștefănescu, S. (2000). Generating uniform random points inside a cone. Monte Carlo Methods and Applications, 6(2), 115–130. https://doi.org/10.1515/mcma.2000.6.2.115
Tu, L., Luo, J. and Gillies, G.T. (2004) The Mass of the Photon. Reports on Progress in Physics, 68, 77-130. https://doi.org/10.1088/0034-4885/68/1/r02
Vuong, V. Q., Aradi, B., Niklasson, A., ¶, Cui Q. and Irle, S. (2023). Multipole expansion of atomic electron density fluctuation interactions in the density-functional tight-binding method. Journal of Chemical Theory and Computation, 19(21), 7592–7605. https://doi:10.1021/acs.jctc.3c00778.
Williams, E. R., Faller, J. E., & Hill, H. A. (1971). New experimental test of Coulomb’s law: A laboratory upper limit on the photon rest mass. Physical Review Letters, 26, 721-724. https://doi.org/10.1103/PhysRevLett.26.721
Published
2025-12-11
Section
Artículos de Divulgación