Mecanismos de almacenamiento de hidrógeno en materiales nanoestructurados para aplicaciones en vehículos de transporte

  • Cesar Alberto Cab Cauich
Palabras clave: almacenamiento de Hidrógeno, quimisorción, fisisorción, nanomateriales

Resumen

El hidrógeno es un combustible alternativo para aplicaciones de vehículos de transporte debido a sus ventajas como combustible limpio en comparación con los combustibles fósiles. Sin embargo, su masificación en vehículos de transporte terrestre y uso en el transporte aéreo depende de mejorar los sistemas de almacenamiento en cuanto a seguridad y eficiencia (mayor densidad energética por unidad de peso o volumen), debido a que el hidrógeno es muy explosivo y se requiere almacenar en altas densidades para obtener mayor autonomía. Una alternativa para resolver estas problemáticas se basa en la estrategia de utilizar tanques de combustibles de materiales sólidos en los cuales el hidrógeno pueda almacenarse mediante su adsorción en la superficie de los poros del material, sin la necesidad de emplear temperaturas criogénicas, así como la posibilidad de tener una cinética rápida en la carga y descarga del gas. La seguridad se mejora debido a que el hidrógeno se encuentra adsorbido en el material a presiones más bajas que en un cilindro convencional. Debido a las ventajas que poseen los materiales nanoestructurados para diseñar un sistema de este tipo, en este artículo revisamos los mecanismos de almacenamiento de hidrógeno en esos materiales.

Citas

Allendorf, M. D., Hulvey, Z., Gennett, T., Ahmed, A., Autrey, T., Camp, J., … Wood, B. C. (2018). An assessment of strategies for the development of solid-state adsorbents for vehicular hydrogen storage. Energy & Environmental Science, 11(10), 2784–2812. https://doi.org/10.1039/C8EE01085D
Bezi Javan, M., Houshang Shirdel-Havar, A., Soltani, A., & Pourarian, F. (2016). Adsorption and dissociation of H2 on Pd doped graphene-like SiC sheet. International Journal of Hydrogen Energy, 41(48), 22886–22898. https://doi.org/10.1016/j.ijhydene.2016.09.081
Bhatia, S. K., & Myers, A. L. (2006). Optimum Conditions for Adsorptive Storage. Langmuir, 22(4), 1688–1700. https://doi.org/10.1021/la0523816
Bieri, M., Treier, M., Cai, J., Aït-Mansour, K., Ruffieux, P., Gröning, O., … Fasel, R. (2009). Porous graphenes: two-dimensional polymer synthesis with atomic precision. Chemical Communications, (45), 6919. https://doi.org/10.1039/b915190g
Cabria, I., López, M. J., & Alonso, J. A. (2005). Enhancement of hydrogen physisorption on graphene and carbon nanotubes by Li doping. The Journal of Chemical Physics, 123(20), 204721. https://doi.org/10.1063/1.2125727
Chen, P. (1999). High H2 Uptake by Alkali-Doped Carbon Nanotubes Under Ambient Pressure and Moderate Temperatures. Science, 285(5424), 91–93. https://doi.org/10.1126/science.285.5424.91
Ci, L., Zhu, H., Wei, B., Xu, C., & Wu, D. (2003). Annealing amorphous carbon nanotubes for their application in hydrogen storage. Applied Surface Science, 205(1–4), 39–43. https://doi.org/10.1016/S0169-4332(02)00897-8
Conrad, H., Ertl, G., & Latta, E. E. (1974). Adsorption of hydrogen on palladium single crystal surfaces. Surface Science, 41(2), 435–446. https://doi.org/10.1016/0039-6028(74)90060-0
Contescu, C. I., van Benthem, K., Li, S., Bonifacio, C. S., Pennycook, S. J., Jena, P., & Gallego, N. C. (2011). Single Pd atoms in activated carbon fibers and their contribution to hydrogen storage. Carbon, 49(12), 4050–4058. https://doi.org/10.1016/j.carbon.2011.05.021
Costanzo, F., Silvestrelli, P. L., & Ancilotto, F. (2012). Physisorption, Diffusion, and Chemisorption Pathways of H 2 Molecule on Graphene and on (2,2) Carbon Nanotube by First Principles Calculations. Journal of Chemical Theory and Computation, 8(4), 1288–1294. https://doi.org/10.1021/ct300143a
DOE Technical Targets for Onboard Hydrogen Storage for Light-Duty Vehicles. Department of Energy. (2018). Obtenido de https://www.energy.gov/eere/fuelcells/doe-technical-targets-onboard-hydrogen-storage-light-duty-vehicles
Dillon, A. C., Jones, K. M., Bekkedahl, T. A., Kiang, C. H., Bethune, D. S., & Heben, M. J. (1997). Storage of hydrogen in single-walled carbon nanotubes. Nature, 386(6623), 377–379. https://doi.org/10.1038/386377a0
Drelinkiewicz, A., Byszewski, P., & Bielanski, A. (1996). Catalytic hydrogenation of C60 fullerene. Reaction Kinetics & Catalysis Letters, 59(1), 19–27. https://doi.org/10.1007/BF02067987
Dresselhaus, M. S., Williams, K. A., & Eklund, P. C. (1999). Hydrogen Adsorption in Carbon Materials. MRS Bulletin, 24(11), 45–50. https://doi.org/10.1557/S0883769400053458
Henwood, D., & Carey, J. D. (2007). Ab initio investigation of molecular hydrogen physisorption on graphene and carbon nanotubes. Physical Review B, 75(24). https://doi.org/10.1103/PhysRevB.75.245413
Henwood, Daniel, & David Carey, J. (2008). Molecular physisorption on graphene and carbon nanotubes: a comparative ab initio study. Molecular Simulation, 34(10–15), 1019–1023. https://doi.org/10.1080/08927020802175241
Jena, P. (2011). Materials for Hydrogen Storage: Past, Present, and Future. The Journal of Physical Chemistry Letters, 2(3), 206–211. https://doi.org/10.1021/jz1015372
Khandelwal, B., Karakurt, A., Sekaran, P. R., Sethi, V., & Singh, R. (2013). Hydrogen powered aircraft : The future of air transport. Progress in Aerospace Sciences, 60, 45–59. https://doi.org/10.1016/j.paerosci.2012.12.002
Kubas, G. J. (2001). Metal–dihydrogen and σ-bond coordination: the consummate extension of the Dewar–Chatt–Duncanson model for metal–olefin π bonding. Journal of Organometallic Chemistry, 635(1–2), 37–68. https://doi.org/10.1016/S0022-328X(01)01066-X
Lee, S. M., & Lee, Y. H. (2000). Hydrogen storage in single-walled carbon nanotubes. Applied Physics Letters, 76(20), 2877–2879. https://doi.org/10.1063/1.126503
Lee, S.-Y., & Park, S.-J. (2010). Effect of temperature on activated carbon nanotubes for hydrogen storage behaviors. International Journal of Hydrogen Energy, 35(13), 6757–6762. https://doi.org/10.1016/j.ijhydene.2010.03.114
Lewis, R., & Gomer, R. (1969). Adsorption of hydrogen on platinum. Surface Science, 17(2), 333–345. https://doi.org/10.1016/0039-6028(69)90102-2
Li, J., Furuta, T., Goto, H., Ohashi, T., Fujiwara, Y., & Yip, S. (2003). Theoretical evaluation of hydrogen storage capacity in pure carbon nanostructures. The Journal of Chemical Physics, 119(4), 2376–2385. https://doi.org/10.1063/1.1582831
Liu, C. (1999). Hydrogen Storage in Single-Walled Carbon Nanotubes at Room Temperature. Science, 286(5442), 1127–1129. https://doi.org/10.1126/science.286.5442.1127
López-Corral, I., Irigoyen, B., & Juan, A. (2014). Bonding in PdH2 and Pd2H2 systems adsorbed on carbon nanotubes: Implications for hydrogen storage. International Journal of Hydrogen Energy, 39(16), 8780–8790. https://doi.org/10.1016/j.ijhydene.2013.12.032
Mirnezhad, M., Ansari, R., Seifi, M., Rouhi, H., & Faghihnasiri, M. (2012). Mechanical properties of graphene under molecular hydrogen physisorption: An ab initio study. Solid State Communications, 152(10), 842–845. https://doi.org/10.1016/j.ssc.2012.02.021
Niu, J., Rao, B. K., & Jena, P. (1992). Binding of hydrogen molecules by a transition-metal ion. Physical Review Letters, 68(15), 2277–2280. https://doi.org/10.1103/PhysRevLett.68.2277
Oh, H., Gennett, T., Atanassov, P., Kurttepeli, M., Bals, S., Hurst, K. E., & Hirscher, M. (2013). Hydrogen adsorption properties of platinum decorated hierarchically structured templated carbons. Microporous and Mesoporous Materials, 177, 66–74. https://doi.org/10.1016/j.micromeso.2013.04.020
Otarbay, Z. E., Gabdullin, M. T., Abdullin, K. A., Shur, D. V., Ismailov, D. V., Yerlanuly, Y., & Kerimbekov, D. S. (2018). Hydrogenization of fullerene as a method of storage of hydrogen. Journal of Physics: Conference Series, 987, 012025. https://doi.org/10.1088/1742-6596/987/1/012025
Panella, B., Hirscher, M., & Roth, S. (2005). Hydrogen adsorption in different carbon nanostructures. Carbon, 43(10), 2209–2214. https://doi.org/10.1016/j.carbon.2005.03.037
Parambhath, V. B., Nagar, R., Sethupathi, K., & Ramaprabhu, S. (2011). Investigation of Spillover Mechanism in Palladium Decorated Hydrogen Exfoliated Functionalized Graphene. The Journal of Physical Chemistry C, 115(31), 15679–15685. https://doi.org/10.1021/jp202797q
Poirier, E., Chahine, R., Bénard, P., Cossement, D., Lafi, L., Mélançon, E., … Désilets, S. (2004). Storage of hydrogen on single-walled carbon nanotubes and other carbon structures. Applied Physics A, 78(7), 961–967. https://doi.org/10.1007/s00339-003-2415-y
Rosi, N. L. (2003). Hydrogen Storage in Microporous Metal-Organic Frameworks. Science, 300(5622), 1127–1129. https://doi.org/10.1126/science.1083440
Sakintuna, B., Lamaridarkrim, F., & Hirscher, M. (2007). Metal hydride materials for solid hydrogen storage: A review☆. International Journal of Hydrogen Energy, 32(9), 1121–1140. https://doi.org/10.1016/j.ijhydene.2006.11.022
Silvestrelli, P. L., & Ambrosetti, A. (2014). Including screening in van der Waals corrected density functional theory calculations: The case of atoms and small molecules physisorbed on graphene. The Journal of Chemical Physics, 140(12), 124107. https://doi.org/10.1063/1.4869330
Tozzini, V., & Pellegrini, V. (2013). Prospects for hydrogen storage in graphene. Phys. Chem. Chem. Phys., 15(1), 80–89. https://doi.org/10.1039/C2CP42538F
Wang, Q., & Johnson, J. K. (1999). Optimization of Carbon Nanotube Arrays for Hydrogen Adsorption. The Journal of Physical Chemistry B, 103(23), 4809–4813. https://doi.org/10.1021/jp9900032
Yürüm, Y., Taralp, A., & Veziroglu, T. N. (2009). Storage of hydrogen in nanostructured carbon materials. International Journal of Hydrogen Energy, 34(9), 3784–3798. https://doi.org/10.1016/j.ijhydene.2009.03.001
Zhu, H., Cao, A., Li, X., Xu, C., Mao, Z., Ruan, D., … Wu, D. (2001). Hydrogen adsorption in bundles of well-aligned carbon nanotubes at room temperature. Applied Surface Science, 178(1–4), 50–55. https://doi.org/10.1016/S0169-4332(01)00309-9
Publicado
2019-10-30
Sección
Artículos de Divulgación