Caracterización de la gelatina y dicromato de amonio como material fotosensible

  • Rodolfo Pasaye Pérez
  • Flor Anahí Cerna Aguilar
  • Brenda Daniela Medina Aguilar
  • Grissel Estephany Pelaez Martínez
  • Francisco Javier Cira Sánchez
  • Oscar Javier Arellano González
  • Mario Pérez Cortés Facultad de Ingeniería, UADY
  • Mauricio Ortiz Gutiérrez
  • Jorge Lugo Jiménez
Keywords: Gelatin, ammonium dichromate, photosensitive material, holographic gratings

Abstract

The characterization of a photosensitive material composed of commercial Duche brand gelatin mixed with ammonium dichromate in which is recorded a holographic grating is presented. The grating is generated by the interference of two light beams from an Argon laser of 532 nm wavelength. The characterization is carried out by measuring the diffraction efficiency of the grating with a He-Ne with 632.8 nm wavelength as reading beam. When the grating is registered on the material, changes in several parameters are considered, such as the amount of concentration between the gelatin and the ammonium dichromate, the thickness of the cell that contains the mixture of the material, the intensity and the angle of the beams that interfere. It is found that in this material information can be recorded with an efficiency of 11.7 % in the order +1 of diffraction.

References

Azkona, J. J., Martínez-Calderon, M., Gómez, M., Rodríguez, A., y Olaizola, S. M. (2019). Talbot effect in embedded gratings inscribed with femtosecond laser in transparent media. En The european conference on lasers and electro-optics (p. cm p 20).
Bang, K., Jang, C., y Lee, B. (2019). Curved holographic optical elements and applications for curved see-through displays. Journal of Information Display, 20(1), 9–23.
Bjelkhagen, H. I. (2013). Silver-halide recording materials: For holography and their processing (Vol. 66). Springer. Calixto, S. (1987). Dry polymer for holographic recording. Applied optics, 26(18), 3904–3910.
Chang, B. J., y Leonard, C. D. (1979). Dichromated gelatin for the fabrication of holographic optical elements.
Applied optics, 18(14), 2407–2417.
Ferrara, M. A., Striano, V., y Coppola, G. (2019). Volume holographic optical elements as solar concentrators: An
overview. Applied Sciences, 9(1), 193.
Frejlich, J. (2007). Photorefractive materials: fundamental concepts, holographic recording and materials characte-
rization. John Wiley & Sons.
Ganzherli, N., Gulyaev, S., Maurer, I., y Khazvalieva, D. (2019). High-frequency relief-phase holographic gratings
on dichromated gelatin processed by short-wave uv radiation. Technical Physics Letters, 45(6), 613–615. Khazvalieva, D., Ganzherli, N., Gulyaev, S., y Maurer, I. (2019). High-frequency relief holographic gratings created by exposing dichromated gelatin to short-wave uv radiation. En Journal of physics: Conference series (Vol.
1236, p. 012020).
Rastogi, V., Agarwal, S., Kumar, V., y Shakher, C. (2019). Holographic optical element based digital holographic
interferometer for the study of macro flames, micro flames and their temperature instability. Optics and Lasers
in Engineering, 122, 29–36.
Romero-Arellano, V., Solano, C., y Martínez-Ponce, G. (2006). Gelatina dicromatada modificada para incrementar
su resistencia a la humedad. Revista mexicana de física, 52(2), 99–103.
Shankoff, T. (1968). Phase holograms in dichromated gelatin. Applied Optics, 7(10), 2101–2105.
Solano, C. (1993). Principales parámetros de los materiales fotosensibles para utilizarse en holografía. Revista
Mexicana de Física, 40(5), 686–712.
Villegas, A. M. V. (2010). Elementos holográficos en gelatinas dicromatadas (Tesis Doctoral no publicada). Uni-
versidad de Zaragoza.
Published
2020-08-24
Section
Artículos de Investigación