Síntesis, caracterización y capacidad adsortiva de las nanopartículas de magnetita para la eliminación de metales en aguas superficiales

  • Marisela Huanca Ccamerccoa Ing. Quimica
Palabras clave: Nanoparticulas, adsorcion, plomo, manganeso, cobre

Resumen

Se emplearon nanopartículas de magnetita (NPm) que actuaron como eficientes adsorbentes para la eliminación de metales como plomo (Pb), cobre (Cu) y manganeso (Mn) en aguas superficiales. Las NPm fueron sintetizadas por el método de coprecipitación y caracterizadas por técnicas como RAMAN, TEM, BET y FTIR.  Los resultados experimentales arrogaron picos de 480, 560, 600 y 654 cm-1 característicos de la magnetita con la espectroscopia RAMAN, con un tamaño promedio de nanopartícula de 10 nm mediante la técnica de TEM y con un área de superficie de 129.72 mg2g-1 en BET. Los parámetros óptimos de adsorción de los metales se llevaron a cabo en batch con 5 mg de NPm como adsorbente. Las eficiencias de remoción mostraron que la eficiencia máxima se logró para el metal Pb de 95.67 %, y un porcentaje mínimo para Mn 53.89% y 50.73% Cu debido a una atracción electrostática diferente entre los metales pesados. Se determinó que el modelo de pseudo segundo orden presento un mejor ajuste para la cinética de reacción de los tres metales. Los resultados obtenidos demuestran el alto rendimiento de las NPm para remover metales en aguas superficiales.

Citas

[1] C. Chávez, “Detección de metales pesados en agua,” Inst. Nac. astrofísica, óptica y electrónica, vol. 0, pp. 51–54, 2011.
[2] Organización Mundial de La Salud, “Guías para la calidad del agua de consumo humano.,” Organ. Mund. la Salud, vol. 4, p. 608, 2011, [Online]. Available: https://apps.who.int/iris/bitstream/handle/10665/272403/9789243549958-spa.pdf?sequence=1&isAllowed=y.
[3] I. Lung, M. Stan, O. Opris, M. L. Soran, M. Senila, and M. Stefan, “Removal of Lead(II), Cadmium(II), and Arsenic(III) from Aqueous Solution Using Magnetite Nanoparticles Prepared by Green Synthesis with Box–Behnken Design,” Anal. Lett., vol. 51, no. 16, pp. 2517–2529, 2018, doi: 10.1080/00032719.2018.1446974.
[4] M. Taseidifar, F. Makavipour, R. M. Pashley, and A. F. M. M. Rahman, “Removal of heavy metal ions from water using ion flotation,” Environ. Technol. Innov., vol. 8, pp. 182–190, 2017, doi: 10.1016/j.eti.2017.07.002.
[5] L. Giraldo, A. Erto, and J. C. Moreno-Piraján, “Magnetite nanoparticles for removal of heavy metals from aqueous solutions: Synthesis and characterization,” Adsorption, vol. 19, no. 2–4, pp. 465–474, 2013, doi: 10.1007/s10450-012-9468-1.
[6] Y. P. Yew et al., “Green Synthesis of Magnetite (Fe3O4) Nanoparticles Using Seaweed (Kappaphycus alvarezii) Extract,” Nanoscale Res. Lett., vol. 11, no. 1, 2016, doi: 10.1186/s11671-016-1498-2.
[7] E. A. Deliyanni, N. K. Lazaridis, E. N. Peleka, and K. A. Matis, “Metals Removal from Aqueous Solution by Iron-Based Bonding Agents,” Environ. Sci. Pollut. Res., vol. 11, no. 1, pp. 18–21, 2004, doi: 10.1065/espr2003.08.168.
[8] T. Yoshida, H. Yamauchi, and G. Fan Sun, “Chronic health effects in people exposed to arsenic via the drinking water: Dose-response relationships in review,” Toxicol. Appl. Pharmacol., vol. 198, no. 3, pp. 243–252, 2004, doi: 10.1016/j.taap.2003.10.022.
[9] W. Jiang et al., “Preparation and properties of superparamagnetic nanoparticles with narrow size distribution and biocompatible,” J. Magn. Magn. Mater., vol. 283, no. 2–3, pp. 210–214, 2004, doi: 10.1016/j.jmmm.2004.05.022.
[10] P. P. Bergmann CP, “Raman Spectroscopy of Iron Oxide of Nanoparticles (Fe3O4),” J. Mater. Sci. Eng., vol. 05, no. 01, pp. 4–6, 2015, doi: 10.4172/2169-0022.1000217.
[11] J. Song, H. Kong, and J. Jang, “Adsorption of heavy metal ions from aqueous solution by polyrhodanine-encapsulated magnetic nanoparticles,” J. Colloid Interface Sci., vol. 359, no. 2, pp. 505–511, 2011, doi: 10.1016/j.jcis.2011.04.034.
[12] J. Environ, “sorption experiments , whereas a particle size of 328 | xm was used for column studies . Determination of pH zpc A procedure outlined by Huang and Ostovic ( 1978 ) was used to determine the pH of the zero point of charge ( pH zpc ) of chitosan . To each o,” vol. 114, no. 4, pp. 962–974, 1989.
[13] C. Faur-Brasquet, K. Kadirvelu, and P. Le Cloirec, “Removal of metal ions from aqueous solution by adsorption onto activated carbon cloths: Adsorption competition with organic matter,” Carbon N. Y., vol. 40, no. 13, pp. 2387–2392, 2002, doi: 10.1016/S0008-6223(02)00117-3.
[14] G. L. Rorrer, T. Y. Hsien, and J. D. Way, “Synthesis of Porous-Magnetic Chitosan Beads for Removal of Cadmium Ions from Waste Water,” Ind. Eng. Chem. Res., vol. 32, no. 9, pp. 2170–2178, 1993, doi: 10.1021/ie00021a042.
[15] R. Leyva Ramos, “Difusión Intraparticular de Metales Pesados durante la Adsorción sobre Carbón Activado,” Difusión Met. pesados, no. October, pp. 95–112, 2017.
[16] Y. F. Shen, J. Tang, Z. H. Nie, Y. D. Wang, Y. Ren, and L. Zuo, “Preparation and application of magnetic Fe3O4 nanoparticles for wastewater purification,” Sep. Purif. Technol., vol. 68, no. 3, pp. 312–319, 2009, doi: 10.1016/j.seppur.2009.05.020.
[17] S. P. Schwaminger, C. Syhr, and S. Berensmeier, “Controlled synthesis of magnetic iron oxide nanoparticles: Magnetite or maghemite?,” Crystals, vol. 10, no. 3, 2020, doi: 10.3390/cryst10030214.
[18] M. Stefan et al., “Synthesis and characterization of Fe 3 O 4 @ZnS and Fe 3 O 4 @Au@ZnS core-shell nanoparticles,” Appl. Surf. Sci., vol. 288, pp. 180–192, 2014, doi: 10.1016/j.apsusc.2013.10.005.
[19] O. N. Shebanova and P. Lazor, “Raman study of magnetite (Fe3O4): Laser-induced thermal effects and oxidation,” J. Raman Spectrosc., vol. 34, no. 11, pp. 845–852, 2003, doi: 10.1002/jrs.1056.
[20] L. Slavov et al., “Raman spectroscopy investigation of magnetite nanoparticles in ferrofluids,” J. Magn. Magn. Mater., vol. 322, no. 14, pp. 1904–1911, 2010, doi: 10.1016/j.jmmm.2010.01.005.
[21] M. Testa-Anta, M. A. Ramos-Docampo, M. Comesaña-Hermo, B. Rivas-Murias, and V. Salgueiriño, “Raman spectroscopy to unravel the magnetic properties of iron oxide nanocrystals for bio-related applications,” Nanoscale Adv., vol. 1, no. 6, pp. 2086–2103, 2019, doi: 10.1039/c9na00064j.
[22] S. Sirivisoot and B. S. Harrison, “Magnetically stimulated ciprofloxacin release from polymeric microspheres entrapping iron oxide nanoparticles,” Int. J. Nanomedicine, vol. 10, pp. 4447–4458, 2015, doi: 10.2147/IJN.S82830.
[23] I. N. Beara et al., “Polyphenolic profile, antioxidant and neuroprotective potency of grape juices and wines from Fruška Gora region (Serbia),” Int. J. Food Prop., vol. 20, no. 00, pp. S2552–S2568, 2018, doi: 10.1080/10942912.2017.1375512.
[24] J. Nikić et al., “Arsenic removal from water by green synthesized magnetic nanoparticles,” Water (Switzerland), vol. 11, no. 12, 2019, doi: 10.3390/w11122520.
[25] K. S. W. Sing, “Reporting physisorption data for gas / solid systems with Special Reference to the Determination of S,” Pure Appl. Chem., vol. 54, no. 11, pp. 2201–2218, 1982.
[26] H. Zeng, L. Zhai, T. Qiao, Y. Yu, J. Zhang, and D. Li, “Efficient removal of As(V) from aqueous media by magnetic nanoparticles prepared with Iron-containing water treatment residuals,” Sci. Rep., vol. 10, no. 1, pp. 1–12, 2020, doi: 10.1038/s41598-020-65840-1.
[27] P. E. G. Casillas, C. A. R. Gonzalez, and C. A. M. Pérez, “Infrared Spectroscopy of Functionalized Magnetic Nanoparticles,” Infrared Spectrosc. - Mater. Sci. Eng. Technol., 2012, doi: 10.5772/35481.
[28] J. Mürbe, A. Rechtenbach, and J. Töpfer, “Synthesis and physical characterization of magnetite nanoparticles for biomedical applications,” Mater. Chem. Phys., vol. 110, no. 2–3, pp. 426–433, 2008, doi: 10.1016/j.matchemphys.2008.02.037.
[29] N. Morito and W. Suetaka, “Infrared Reflection Studies of the Oxidation of Copper and the Inhibition By Benzotriazole.,” J Jap Inst Met., vol. 36, no. 11, pp. 1131–1140, 1972, doi: 10.2320/jinstmet1952.36.11_1131.
[30] C. Kannan, K. Muthuraja, and M. R. Devi, “Hazardous dyes removal from aqueous solution over mesoporous aluminophosphate with textural porosity by adsorption,” J. Hazard. Mater., vol. 244–245, pp. 10–20, 2013, doi: 10.1016/j.jhazmat.2012.11.016.
[31] Y. Ahn, E. J. Choi, and E. H. Kim, “Superparamagnetic relaxation in cobalt ferrite nanoparticles synthesized from hydroxide carbonate precursors,” Rev. Adv. Mater. Sci., vol. 5, no. 5, pp. 477–480, 2003.
[32] S. Jandl and J. Deslandes, “Infrared spectra of HfS3,” Phys. Rev. B, vol. 24, no. 2, pp. 1040–1044, 1981, doi: 10.1103/PhysRevB.24.1040.
[33] A. K. Bordbar, A. A. Rastegari, R. Amiri, E. Ranjbakhsh, M. Abbasi, and A. R. Khosropour, “Characterization of Modified Magnetite Nanoparticles for Albumin Immobilization,” Biotechnol. Res. Int., vol. 2014, pp. 1–6, 2014, doi: 10.1155/2014/705068.
[34] S. L. Iconaru, R. Guégan, C. L. Popa, M. Motelica-Heino, C. S. Ciobanu, and D. Predoi, “Magnetite (Fe3O4) nanoparticles as adsorbents for As and Cu removal,” Appl. Clay Sci., vol. 134, pp. 128–135, 2016, doi: 10.1016/j.clay.2016.08.019.
[35] Y. Bagbi, A. Sarswat, D. Mohan, A. Pandey, and P. R. Solanki, “Lead and Chromium Adsorption from Water using L-Cysteine Functionalized Magnetite (Fe3O4) Nanoparticles,” Sci. Rep., vol. 7, no. 1, pp. 1–15, 2017, doi: 10.1038/s41598-017-03380-x.
[36] Y. Bagbi, A. Sarswat, D. Mohan, A. Pandey, and P. R. Solanki, “Lead (Pb2+) adsorption by monodispersed magnetite nanoparticles: Surface analysis and effects of solution chemistry,” J. Environ. Chem. Eng., vol. 4, no. 4, pp. 4237–4247, 2016, doi: 10.1016/j.jece.2016.09.026.
[37] B. O. Orimolade, F. A. Adekola, and G. B. Adebayo, “Silica-coated magnetite nanoparticles as a novel adsorbent for the removal of Iron(II) and Manganese(II) from surface water: Equilibrium, kinetics and thermodynamic studies,” Moroccan J. Chem., vol. 6, no. 4, pp. 708–720, 2018.
[38] Y. S. Ho and G. Mckay, “a C Om Parison of C Hem Isorptio N Kinetic M Odels Applied To Pollutant Rem Oval on Various So Rbents,” vol. 76, 1998.
[39] M. Kumari, C. U. Pittman, and D. Mohan, “Heavy metals [chromium (VI) and lead (II)] removal from water using mesoporous magnetite (Fe3O4) nanospheres,” J. Colloid Interface Sci., vol. 442, no. Vi, pp. 120–132, 2015, doi: 10.1016/j.jcis.2014.09.012.
[40] S. Rajput, C. U. Pittman, and D. Mohan, “Magnetic magnetite (Fe3O4) nanoparticle synthesis and applications for lead (Pb2+) and chromium (Cr6+) removal from water,” J. Colloid Interface Sci., vol. 468, pp. 334–346, 2016, doi: 10.1016/j.jcis.2015.12.008.
Publicado
2023-08-24
Sección
Artículos de Investigación