Chemical Characterization of Exopolysaccharides Synthesized by a Native Consortium

  • Alina Dianela Sosa Durán Universidad Autónoma de Yucatán
  • Monica Noel Sánchez González, Dra Facultad de Ingeniería Química UADY http://orcid.org/0000-0003-4667-2972
  • Areceli González Burgos, M en C Facultad de Ingeniería Química UADY
Keywords: Exopolysaccharides, Halophilic microorganisms, Consortium, Hypersaline environment, Chemical composition, Microbial consortium

Abstract

Exopolysaccharides synthesized by halophilic bacteria have important industrial applications. The molecules mainly studied are produced by axenic cultures; however, microbial consortia produce exopolysaccharides more efficiently. Therefore, in this work the chemical characterization of exopolysaccharide synthesized by a microbial consortium obtained from the Laguna Rosada of Uaymitun, a hypersaline water body in Yucatan, Mexico, was carried out. The exopolysaccharide was composed by 61.38% carbohydrates, 1.55% proteins and the remaining 37.07% of unknown compounds. The presence of uronic acids suggest gelling properties. Thin layer chromatographic analysis indicated the possible presence of fucose, that is common in halophilic exopolysaccharides. In addition, electrophoretic analysis suggested the presence of different proteins in the structure.

References

Amjres, H., Béjar, V., Quesada, E., Abrini, J., Llamas, I. (2010). Aplicaciones del exopolisacárido producido por la cepa HK30 de Halomonas nitroreducens en la industria farmacéutica. “Ars Pharmaceutica”, 51, 255-266. http://hdl.handle.net/10481/26428
Amjres, H., Béjar, V., Quesada, E., Carranza, D., Abrini, J., Sinquin, C., Ratiskol, J., Colliec-Jouault, S., Llamas, I. (2015). Characterization of haloglycan, an exopolysaccharide produced by Halomonas stenophila HK30. “International Journal of Biological Macromolecules”, 72, 117-124. https://doi.org/10.1016/j.ijbiomac.2014.07.052
Arun, J., Selvakumar, S., Sathishkumar, R., Moovendhan, M., Ananthan, G, Maruthiah, T., Palavesam, A. (2017). In vitro antioxidant activities of an exopolysaccharide from a salt pan bacterium Halolactibacillus miurensis. “Carbohydrate Polymers”, 155, 400-406. https://doi.org/10.1016/j.carbpol.2016.08.085
Bradford, M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. “Analytical Biochemistry”, 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
Bele, A., Khale, A. (2011) An overview on thin layer chromatography. “International Journal of Pharmaceutical Sciences and Research”, 2(2), 256-267. http://dx.doi.org/10.13040/IJPSR.0975-8232.2(2).256-67
Dubois, M., Gilles, K., Hamilton, J., Rebers, P., Smith, F. (1956). Colorimetric method for determination of sugars and related substances. “Analytical Chemistry”, 28(3), 350-356. https://doi.org/10.1021/ac60111a017
Escartin, A. (2017). “Producción de un exopolisacárido por la cepa Leuconostoc mesenteroides ssp mesenteroides BL-UV04 en un medio de cultivo enriquecido con pilomcillo mediante un sistema en lote y lote alimentado”. Tesis de maestría, Universidad Veracruzana, Veracruz, México. https://www.uv.mx/mca/files/2018/01/Escartin-Torres-Alejandra.pdf
Freitas, F., Alves, V., Reis, M. (2011). Advances in bacterial exopolysaccharides: from production to biotechnological applications. “Trends in Biotechnology”, 29(8), 388-398.
Freitas, F., Torres, C., Reis, M. (2017). Engineering aspects of microbial exopolysaccharide production. “Bioresource Technology”, 245, 1674-1683. https://doi.org/10.1016/j.tibtech.2011.03.008
González, A. (2011). “Caracterización genómica y funcional de consorcios microbianos procedentes de una laguna costera”. Tesis de posgrado institucional, Universidad Autónoma de Yucatán, Yucatán, México.
He, F. (2011). Coomassie Blue Staining. “Bio-protocol”, Bio101: e78. https://bio-protocol.org/bio101/e78
He, F. (2011). Laemmli-SDS-PAGE. “Bio-protocol”, Bio101: e80. https://bio-protocol.org/bio101/e80
Kant, S., Kant, R., Choi, Y., Kan, E., Kim, Y., Yang, Y. (2018). Biotechnological potential of microbial consortia and future perspectives. “Critical Reviews in Biotechnology”, 38(8), 1209-1229. https://doi.org/10.1080/07388551.2018.1471445
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. “Nature”, 227(5259), 680-685. https://doi.org/10.1038/227680a0
Mancilla-Margalli, N., López, M. (2006). Water-soluble carbohydrates and fructan structure patterns from agave and dasylirion species. “Journal of Agricultural and Food Chemistry”, 54(20), 7832-7839. https://doi.org/10.1021/jf060354v
Mollakhalili, N., Mohammadifar, M. (2015). Microbial exopolysaccharide: A review of their function and application in food sciencie. “Journal of Food Quality and Hazards Control”, 2, 112-117. https://jfqhc.ssu.ac.ir/browse.php?a_code=A-10-1-114&slc_lang=en&sid=1
More, T., Yan, S., Tyagi, R. and Surampalli, R. (2015). Biopolymers production by mixed culture and their applications in water and wastewater treatment. “Water Environment Research”, 87(6), 533-546. https://doi.org/10.2175/106143015x14212658614676
Ruiz, L. (2011). “Diseño de un Proceso para la Obtención de una Galleta a partir de Harina de Trigo Enriquecida con Paraíso Blanco (Moringa oleifera) y su Respectiva Evaluación Nutricional”. Tesis de Licenciatura, Universidad de San Carlos de Guatemala, Guatemala, Guatemala. http://biblioteca.usac.edu.gt/tesis/08/08_1210_Q.pdf
Santos, J., León, K., Alcívar, J., Flores, E., Olivares, S. (2016). Cuantificación y caracterización química de exopolisacáridos (EPS) producidos por una cepa de Penicillium sp. aislada de la Antártida. “Revista Científica de Ciencias Naturales y Ambientales”, 10(2), 97-101.
Sran, K., Bisht, B., Mayilraj, S., Choudhury, A. (2019). Structural characterization and antioxidant potential of a novel anionic exopolysaccharide produced by marine Microbacterium aurantiacum FSW-25. “International Journal of Biological Macromolecules”, 131, 343-352. https://doi.org/10.1016/j.ijbiomac.2019.03.016
Taylor, K., Buchanan-Smith, J. (1992). A colorimetric method for the quantitation of uronic acis and a specific assay for galacturonic acid. “Analytical Biochemistry”, 201(1), 190-196. https://doi.org/10.1016/0003-2697(92)90194-c
Wang, J., Salem, D., Sani, R. (2018). Extremophilic exopolysaccharides: a review and new perspectives on engineering strategies and aplications. “Carbohydrate Polymers”, 205, 8-26. https://doi.org/10.1016/j.carbpol.2018.10.011
Wang, K., Li, W., Rui, X., Chen, X., Jiang, M. and Dong, M. (2014). Characterization of a novel exopolysaccharide with antitumor activity from Lactobacillus plantarum 70810. “International Journal of Biological Macromolecules”, 63, 133-139. https://doi.org/10.1016/j.ijbiomac.2013.10.036
Zhang, S., Merino, N., Okamoto, A. and Gedalanga, P. (2018). Interkingdom microbial consortia mechanisms to guide biotechnological applications. “Microbial Biotechnology”, 11(5), 833-847. https://doi.org/10.1111/1751-7915.13300
Published
2022-04-29
Section
Artículos de Investigación