Una perspectiva sobre óxidos con alta correlación electrónica, sus propiedades, mecanismos de control y aplicaciones

  • José Pablo Sosa Lizama
Palabras clave: correlación electrónica, óxidos de metales de transición, heteroestructuras, interfaces, fenómenos interfaciales.

Resumen

En sistemas como los óxidos de metales de transición, la competición de múltiples escalas de energía similares produce a una paleta riquísima de propiedades como ferromagnetismo, superconductividad y magnetorresistencia, entre otras. El control de estas fases da lugar a múltiples transiciones entre estos estados que, usadas hábilmente, permiten ingeniar dispositivos como memorias, transductores y transistores.  Más aún, el empleo de técnicas de deposición de material para el crecimiento epitaxial y la heteroestructuración amplían las posibilidades de fenómenos novedosos más complejos, por ejemplo, ofreciendo acceso a efectos interfaciales imposibles de replicar en el bulto como consecuencia de la ruptura en la simetría traslacional. En este artículo mencionaremos inicialmente algunas de las características de los sistemas con alta correlación electrónica, y en particular de los óxidos de metales de transición, brindando una introducción cualitativa a la física microscópica dominante en ellos y algunas de sus transiciones de fase. Después se discuten algunos elementos del crecimiento epitaxial de materiales, y dos de los efectos más importantes que pueden ocurrir en él: transferencia de carga y reconstrucción. Finalmente, discutimos un par de perspectivas de aplicación exploradas con heteroestructuras.

Biografía del autor/a

José Pablo Sosa Lizama

 

 

Citas

Basov, D. N., Averitt, R. D., van der Marel, D., Dressel, M., & Haule, K. (2011). Electrodynamics of correlated electron materials. Reviews of Modern Physics, 83(2), 471–541. https://doi.org/10.1103/RevModPhys.83.471
Bossini, D., Juraschek, D. M., Geilhufe, R. M., Nagaosa, N., Balatsky, A. V, Milanović, M., Srdić, V. V, Šenjug, P., Topić, E., Barišić, D., Rubčić, M., Pajić, D., Arima, T., Savoini, M., Johnson, S. L., Davies, C. S., & Kirilyuk, A. (2023). Magnetoelectrics and multiferroics: theory, synthesis, characterisation, preliminary results and perspectives for all-optical manipulations. Journal of Physics D: Applied Physics, 56(27), 273001. https://doi.org/10.1088/1361-6463/acc8e1
Catalano, S., Gibert, M., Fowlie, J., Íñiguez, J., Triscone, J.-M., & Kreisel, J. (2018). Rare-earth nickelates RNiO3: thin films and heterostructures. Reports on Progress in Physics, 81(4), 046501. https://doi.org/10.1088/1361-6633/aaa37a
Cava, R., de Leon, N., & Xie, W. (2021). Introduction: Quantum Materials. Chemical Reviews, 121(5), 2777–2779. https://doi.org/10.1021/acs.chemrev.0c01322
Caviglia, A. D., Gabay, M., Gariglio, S., Reyren, N., Cancellieri, C., & Triscone, J.-M. (2010). Tunable Rashba Spin-Orbit Interaction at Oxide Interfaces. Physical Review Letters, 104(12), 126803. https://doi.org/10.1103/PhysRevLett.104.126803
Chumak, A. V, Serga, A. A., & Hillebrands, B. (2017). Magnonic crystals for data processing. Journal of Physics D: Applied Physics, 50(24), 244001. https://doi.org/10.1088/1361-6463/aa6a65
Chumak, A. V., Vasyuchka, V. I., Serga, A. A., & Hillebrands, B. (2015). Magnon spintronics. Nature Physics, 11(6), 453–461. https://doi.org/10.1038/nphys3347
Coll, M., Fontcuberta, J., Althammer, M., Bibes, M., Boschker, H., Calleja, A., Cheng, G., Cuoco, M., Dittmann, R., Dkhil, B., El Baggari, I., Fanciulli, M., Fina, I., Fortunato, E., Frontera, C., Fujita, S., Garcia, V., Goennenwein, S. T. B., Granqvist, C.-G., … Granozio, F. M. (2019a). Towards Oxide Electronics: a Roadmap. Applied Surface Science, 482, 1–93. https://doi.org/10.1016/j.apsusc.2019.03.312
Coll, M., Fontcuberta, J., Althammer, M., Bibes, M., Boschker, H., Calleja, A., Cheng, G., Cuoco, M., Dittmann, R., Dkhil, B., El Baggari, I., Fanciulli, M., Fina, I., Fortunato, E., Frontera, C., Fujita, S., Garcia, V., Goennenwein, S. T. B., Granqvist, C.-G., … Granozio, F. M. (2019b). Towards Oxide Electronics: a Roadmap. Applied Surface Science, 482, 1–93. https://doi.org/10.1016/j.apsusc.2019.03.312
Cui, Z., Grutter, A. J., Zhou, H., Cao, H., Dong, Y., Gilbert, D. A., Wang, J., Liu, Y.-S., Ma, J., Hu, Z., Guo, J., Xia, J., Kirby, B. J., Shafer, P., Arenholz, E., Chen, H., Zhai, X., & Lu, Y. (2020). Correlation-driven eightfold magnetic anisotropy in a two-dimensional oxide monolayer. Science Advances, 6(15). https://doi.org/10.1126/sciadv.aay0114
Dagotto, E. (2005). Complexity in Strongly Correlated Electronic Systems. Science, 309(5732), 257–262. https://doi.org/10.1126/science.1107559
Di Castro, D., Cantoni, C., Ridolfi, F., Aruta, C., Tebano, A., Yang, N., & Balestrino, G. (2015). High-Tc Superconductivity at the Interface between the CaCuO2 and SrTiO3 Insulating Oxides. Physical Review Letters, 115(14), 147001. https://doi.org/10.1103/PhysRevLett.115.147001
Di Castro, D., Salvato, M., Tebano, A., Innocenti, D., Aruta, C., Prellier, W., Lebedev, O. I., Ottaviani, I., Brookes, N. B., Minola, M., Moretti Sala, M., Mazzoli, C., Medaglia, P. G., Ghiringhelli, G., Braicovich, L., Cirillo, M., & Balestrino, G. (2012). Occurrence of a high-temperature superconducting phase in (CaCuO2)n/(SrTiO3)m superlattices. Physical Review B, 86(13), 134524. https://doi.org/10.1103/PhysRevB.86.134524
Disa, A. S., Fechner, M., Nova, T. F., Liu, B., Först, M., Prabhakaran, D., Radaelli, P. G., & Cavalleri, A. (2020). Polarizing an antiferromagnet by optical engineering of the crystal field. Nature Physics, 16(9), 937–941. https://doi.org/10.1038/s41567-020-0936-3
Eerenstein, W., Mathur, N. D., & Scott, J. F. (2006). Multiferroic and magnetoelectric materials. Nature, 442(7104), 759–765. https://doi.org/10.1038/nature05023
Gong, D., Yang, J., Hao, L., Horak, L., Xin, Y., Karapetrova, E., Strempfer, J., Choi, Y., Kim, J.-W., Ryan, P. J., & Liu, J. (2022). Reconciling Monolayer and Bilayer Jeff=1/2 Square Lattices in Hybrid Oxide Superlattice. Physical Review Letters, 129(18), 187201. https://doi.org/10.1103/PhysRevLett.129.187201
Govoreanu, B., Kar, G. S., Chen, Y.-Y., Paraschiv, V., Kubicek, S., Fantini, A., Radu, I. P., Goux, L., Clima, S., Degraeve, R., Jossart, N., Richard, O., Vandeweyer, T., Seo, K., Hendrickx, P., Pourtois, G., Bender, H., Altimime, L., Wouters, D. J., … Jurczak, M. (2011). 10×10nm2 Hf/HfOx crossbar resistive RAM with excellent performance, reliability and low-energy operation. 2011 International Electron Devices Meeting, 31.6.1-31.6.4. https://doi.org/10.1109/IEDM.2011.6131652
Han, W., Otani, Y., & Maekawa, S. (2018). Quantum materials for spin and charge conversion. Npj Quantum Materials, 3(1), 27. https://doi.org/10.1038/s41535-018-0100-9
Hwang, H. Y., Iwasa, Y., Kawasaki, M., Keimer, B., Nagaosa, N., & Tokura, Y. (2012). Emergent phenomena at oxide interfaces. Nature Materials, 11(2), 103–113. https://doi.org/10.1038/nmat3223
Iannaccone, G., Bonaccorso, F., Colombo, L., & Fiori, G. (2018). Quantum engineering of transistors based on 2D materials heterostructures. Nature Nanotechnology, 13(3), 183–191. https://doi.org/10.1038/s41565-018-0082-6
Imada, M., Fujimori, A., & Tokura, Y. (1998). Metal-insulator transitions. Reviews of Modern Physics, 70(4), 1039–1263. https://doi.org/10.1103/RevModPhys.70.1039
Jilili, J., Tolbatov, I., Cossu, F., Rahaman, A., Fiser, B., & Kahaly, M. Upadhyay. (2023). Atomic scale interfacial magnetism and origin of metal-insulator transition in (LaNiO3)n/(CaMnO3)m superlattices: a first principles study. Scientific Reports, 13(1), 5056. https://doi.org/10.1038/s41598-023-30686-w
Kai-Shin Li, Ho, C., Ming-Taou Lee, Min-Cheng Chen, Cho-Lun Hsu, Lu, J. M., Lin, C. H., Chen, C. C., Wu, B. W., Hou, Y. F., Lin, C. Yi., Chen, Y. J., Lai, T. Y., Li, M. Y., Yang, I., Wu, C. S., & Fu-Liang Yang. (2014). Utilizing Sub-5 nm sidewall electrode technology for atomic-scale resistive memory fabrication. 2014 Symposium on VLSI Technology (VLSI-Technology): Digest of Technical Papers, 1–2. https://doi.org/10.1109/VLSIT.2014.6894402
Kanamori, J. (1959). Superexchange interaction and symmetry properties of electron orbitals. Journal of Physics and Chemistry of Solids, 10(2–3), 87–98. https://doi.org/10.1016/0022-3697(59)90061-7
Keimer, B., Kivelson, S. A., Norman, M. R., Uchida, S., & Zaanen, J. (2015). From quantum matter to high-temperature superconductivity in copper oxides. Nature, 518(7538), 179–186. https://doi.org/10.1038/nature14165
Kimura, T., Goto, T., Shintani, H., Ishizaka, K., Arima, T., & Tokura, Y. (2003). Magnetic control of ferroelectric polarization. Nature, 426(6962), 55–58. https://doi.org/10.1038/nature02018
King, P. D. C., Wei, H. I., Nie, Y. F., Uchida, M., Adamo, C., Zhu, S., He, X., Božović, I., Schlom, D. G., & Shen, K. M. (2014). Atomic-scale control of competing electronic phases in ultrathin LaNiO3. Nature Nanotechnology, 9(6), 443–447. https://doi.org/10.1038/nnano.2014.59
Koo, H. C., Kwon, J. H., Eom, J., Chang, J., Han, S. H., & Johnson, M. (2009). Control of Spin Precession in a Spin-Injected Field Effect Transistor. Science, 325(5947), 1515–1518. https://doi.org/10.1126/science.1173667
Nakagawa, N., Hwang, H. Y., & Muller, D. A. (2006). Why some interfaces cannot be sharp. Nature Materials, 5(3), 204–209. https://doi.org/10.1038/nmat1569
Nanda, B. R. K., & Satpathy, S. (2008). Effects of strain on orbital ordering and magnetism at perovskite oxide interfaces: LaMnO3/SrMnO3. Physical Review B, 78(5), 054427. https://doi.org/10.1103/PhysRevB.78.054427
Ngai, J. H., Walker, F. J., & Ahn, C. H. (2014). Correlated Oxide Physics and Electronics. Annual Review of Materials Research, 44(1), 1–17. https://doi.org/10.1146/annurev-matsci-070813-113248
Ohtomo, A., & Hwang, H. Y. (2004). A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature, 427(6973), 423–426. https://doi.org/10.1038/nature02308
Ramesh, R., & Schlom, D. G. (2019). Creating emergent phenomena in oxide superlattices. Nature Reviews Materials, 4(4), 257–268. https://doi.org/10.1038/s41578-019-0095-2
Reyren, N., Thiel, S., Caviglia, A. D., Kourkoutis, L. F., Hammerl, G., Richter, C., Schneider, C. W., Kopp, T., Rüetschi, A.-S., Jaccard, D., Gabay, M., Muller, D. A., Triscone, J.-M., & Mannhart, J. (2007). Superconducting Interfaces Between Insulating Oxides. Science, 317(5842), 1196–1199. https://doi.org/10.1126/science.1146006
Samal, D., Gauquelin, N., Takamura, Y., Lobato, I., Arenholz, E., Van Aert, S., Huijben, M., Zhong, Z., Verbeeck, J., Van Tendeloo, G., & Koster, G. (2023). Unusual structural rearrangement and superconductivity in infinite layer cuprate superlattices. Physical Review Materials, 7(5), 054803. https://doi.org/10.1103/PhysRevMaterials.7.054803
Tokura, Y., Kawasaki, M., & Nagaosa, N. (2017). Emergent functions of quantum materials. Nature Physics, 13(11), 1056–1068. https://doi.org/10.1038/nphys4274
Tokura, Y., Seki, S., & Nagaosa, N. (2014). Multiferroics of spin origin. Reports on Progress in Physics, 77(7), 076501. https://doi.org/10.1088/0034-4885/77/7/076501
Yang, Z., Ko, C., & Ramanathan, S. (2011). Oxide Electronics Utilizing Ultrafast Metal-Insulator Transitions. Annual Review of Materials Research, 41(1), 337–367. https://doi.org/10.1146/annurev-matsci-062910-100347
Zaanen, J., Sawatzky, G. A., & Allen, J. W. (1985). Band gaps and electronic structure of transition-metal compounds. Physical Review Letters, 55(4), 418–421. https://doi.org/10.1103/PhysRevLett.55.418
Zhang, J., & Averitt, R. D. (2014). Dynamics and Control in Complex Transition Metal Oxides. Annual Review of Materials Research, 44(1), 19–43. https://doi.org/10.1146/annurev-matsci-070813-113258
Publicado
2024-04-26
Sección
Artículos de Divulgación