Una perspectiva sobre óxidos con alta correlación electrónica, sus propiedades, mecanismos de control y aplicaciones
Abstract
In systems as transition-metal oxides, the competition between multiple energy scales of comparable magnitude produces a very rich palette of properties as ferromagnetism, superconductivity and magnetoresistance, among others. Control of such phases gives rise to multiple transitions between those states which, when skillfully employed, allows to engineer devices as memories, transductors and transistors. Moreover, the employment of material deposition techniques for epitaxial growth and heterostructuring further extend the possibilities of novel complex phenomena, offering e.g. access to interfacial effects that are non-replicable in the bulk as a consequence of translational symmetry-breaking. In this article, we will initially mention some of the characteristics of systems with strong electronic correlations, and particularly those of transition metal-oxides, giving a qualitative introduction to the dominating microscopic physics and some of their phase transitions. Later are discussed some elements from the epitaxial growth of materials, and two of the most important effects taking place in it: charge transfer and reconstruction. Finally, we will discuss a couple of application perspectives currently explored for heterostructures.
References
Bossini, D., Juraschek, D. M., Geilhufe, R. M., Nagaosa, N., Balatsky, A. V, Milanović, M., Srdić, V. V, Šenjug, P., Topić, E., Barišić, D., Rubčić, M., Pajić, D., Arima, T., Savoini, M., Johnson, S. L., Davies, C. S., & Kirilyuk, A. (2023). Magnetoelectrics and multiferroics: theory, synthesis, characterisation, preliminary results and perspectives for all-optical manipulations. Journal of Physics D: Applied Physics, 56(27), 273001. https://doi.org/10.1088/1361-6463/acc8e1
Catalano, S., Gibert, M., Fowlie, J., Íñiguez, J., Triscone, J.-M., & Kreisel, J. (2018). Rare-earth nickelates RNiO3: thin films and heterostructures. Reports on Progress in Physics, 81(4), 046501. https://doi.org/10.1088/1361-6633/aaa37a
Cava, R., de Leon, N., & Xie, W. (2021). Introduction: Quantum Materials. Chemical Reviews, 121(5), 2777–2779. https://doi.org/10.1021/acs.chemrev.0c01322
Caviglia, A. D., Gabay, M., Gariglio, S., Reyren, N., Cancellieri, C., & Triscone, J.-M. (2010). Tunable Rashba Spin-Orbit Interaction at Oxide Interfaces. Physical Review Letters, 104(12), 126803. https://doi.org/10.1103/PhysRevLett.104.126803
Chumak, A. V, Serga, A. A., & Hillebrands, B. (2017). Magnonic crystals for data processing. Journal of Physics D: Applied Physics, 50(24), 244001. https://doi.org/10.1088/1361-6463/aa6a65
Chumak, A. V., Vasyuchka, V. I., Serga, A. A., & Hillebrands, B. (2015). Magnon spintronics. Nature Physics, 11(6), 453–461. https://doi.org/10.1038/nphys3347
Coll, M., Fontcuberta, J., Althammer, M., Bibes, M., Boschker, H., Calleja, A., Cheng, G., Cuoco, M., Dittmann, R., Dkhil, B., El Baggari, I., Fanciulli, M., Fina, I., Fortunato, E., Frontera, C., Fujita, S., Garcia, V., Goennenwein, S. T. B., Granqvist, C.-G., … Granozio, F. M. (2019a). Towards Oxide Electronics: a Roadmap. Applied Surface Science, 482, 1–93. https://doi.org/10.1016/j.apsusc.2019.03.312
Coll, M., Fontcuberta, J., Althammer, M., Bibes, M., Boschker, H., Calleja, A., Cheng, G., Cuoco, M., Dittmann, R., Dkhil, B., El Baggari, I., Fanciulli, M., Fina, I., Fortunato, E., Frontera, C., Fujita, S., Garcia, V., Goennenwein, S. T. B., Granqvist, C.-G., … Granozio, F. M. (2019b). Towards Oxide Electronics: a Roadmap. Applied Surface Science, 482, 1–93. https://doi.org/10.1016/j.apsusc.2019.03.312
Cui, Z., Grutter, A. J., Zhou, H., Cao, H., Dong, Y., Gilbert, D. A., Wang, J., Liu, Y.-S., Ma, J., Hu, Z., Guo, J., Xia, J., Kirby, B. J., Shafer, P., Arenholz, E., Chen, H., Zhai, X., & Lu, Y. (2020). Correlation-driven eightfold magnetic anisotropy in a two-dimensional oxide monolayer. Science Advances, 6(15). https://doi.org/10.1126/sciadv.aay0114
Dagotto, E. (2005). Complexity in Strongly Correlated Electronic Systems. Science, 309(5732), 257–262. https://doi.org/10.1126/science.1107559
Di Castro, D., Cantoni, C., Ridolfi, F., Aruta, C., Tebano, A., Yang, N., & Balestrino, G. (2015). High-Tc Superconductivity at the Interface between the CaCuO2 and SrTiO3 Insulating Oxides. Physical Review Letters, 115(14), 147001. https://doi.org/10.1103/PhysRevLett.115.147001
Di Castro, D., Salvato, M., Tebano, A., Innocenti, D., Aruta, C., Prellier, W., Lebedev, O. I., Ottaviani, I., Brookes, N. B., Minola, M., Moretti Sala, M., Mazzoli, C., Medaglia, P. G., Ghiringhelli, G., Braicovich, L., Cirillo, M., & Balestrino, G. (2012). Occurrence of a high-temperature superconducting phase in (CaCuO2)n/(SrTiO3)m superlattices. Physical Review B, 86(13), 134524. https://doi.org/10.1103/PhysRevB.86.134524
Disa, A. S., Fechner, M., Nova, T. F., Liu, B., Först, M., Prabhakaran, D., Radaelli, P. G., & Cavalleri, A. (2020). Polarizing an antiferromagnet by optical engineering of the crystal field. Nature Physics, 16(9), 937–941. https://doi.org/10.1038/s41567-020-0936-3
Eerenstein, W., Mathur, N. D., & Scott, J. F. (2006). Multiferroic and magnetoelectric materials. Nature, 442(7104), 759–765. https://doi.org/10.1038/nature05023
Gong, D., Yang, J., Hao, L., Horak, L., Xin, Y., Karapetrova, E., Strempfer, J., Choi, Y., Kim, J.-W., Ryan, P. J., & Liu, J. (2022). Reconciling Monolayer and Bilayer Jeff=1/2 Square Lattices in Hybrid Oxide Superlattice. Physical Review Letters, 129(18), 187201. https://doi.org/10.1103/PhysRevLett.129.187201
Govoreanu, B., Kar, G. S., Chen, Y.-Y., Paraschiv, V., Kubicek, S., Fantini, A., Radu, I. P., Goux, L., Clima, S., Degraeve, R., Jossart, N., Richard, O., Vandeweyer, T., Seo, K., Hendrickx, P., Pourtois, G., Bender, H., Altimime, L., Wouters, D. J., … Jurczak, M. (2011). 10×10nm2 Hf/HfOx crossbar resistive RAM with excellent performance, reliability and low-energy operation. 2011 International Electron Devices Meeting, 31.6.1-31.6.4. https://doi.org/10.1109/IEDM.2011.6131652
Han, W., Otani, Y., & Maekawa, S. (2018). Quantum materials for spin and charge conversion. Npj Quantum Materials, 3(1), 27. https://doi.org/10.1038/s41535-018-0100-9
Hwang, H. Y., Iwasa, Y., Kawasaki, M., Keimer, B., Nagaosa, N., & Tokura, Y. (2012). Emergent phenomena at oxide interfaces. Nature Materials, 11(2), 103–113. https://doi.org/10.1038/nmat3223
Iannaccone, G., Bonaccorso, F., Colombo, L., & Fiori, G. (2018). Quantum engineering of transistors based on 2D materials heterostructures. Nature Nanotechnology, 13(3), 183–191. https://doi.org/10.1038/s41565-018-0082-6
Imada, M., Fujimori, A., & Tokura, Y. (1998). Metal-insulator transitions. Reviews of Modern Physics, 70(4), 1039–1263. https://doi.org/10.1103/RevModPhys.70.1039
Jilili, J., Tolbatov, I., Cossu, F., Rahaman, A., Fiser, B., & Kahaly, M. Upadhyay. (2023). Atomic scale interfacial magnetism and origin of metal-insulator transition in (LaNiO3)n/(CaMnO3)m superlattices: a first principles study. Scientific Reports, 13(1), 5056. https://doi.org/10.1038/s41598-023-30686-w
Kai-Shin Li, Ho, C., Ming-Taou Lee, Min-Cheng Chen, Cho-Lun Hsu, Lu, J. M., Lin, C. H., Chen, C. C., Wu, B. W., Hou, Y. F., Lin, C. Yi., Chen, Y. J., Lai, T. Y., Li, M. Y., Yang, I., Wu, C. S., & Fu-Liang Yang. (2014). Utilizing Sub-5 nm sidewall electrode technology for atomic-scale resistive memory fabrication. 2014 Symposium on VLSI Technology (VLSI-Technology): Digest of Technical Papers, 1–2. https://doi.org/10.1109/VLSIT.2014.6894402
Kanamori, J. (1959). Superexchange interaction and symmetry properties of electron orbitals. Journal of Physics and Chemistry of Solids, 10(2–3), 87–98. https://doi.org/10.1016/0022-3697(59)90061-7
Keimer, B., Kivelson, S. A., Norman, M. R., Uchida, S., & Zaanen, J. (2015). From quantum matter to high-temperature superconductivity in copper oxides. Nature, 518(7538), 179–186. https://doi.org/10.1038/nature14165
Kimura, T., Goto, T., Shintani, H., Ishizaka, K., Arima, T., & Tokura, Y. (2003). Magnetic control of ferroelectric polarization. Nature, 426(6962), 55–58. https://doi.org/10.1038/nature02018
King, P. D. C., Wei, H. I., Nie, Y. F., Uchida, M., Adamo, C., Zhu, S., He, X., Božović, I., Schlom, D. G., & Shen, K. M. (2014). Atomic-scale control of competing electronic phases in ultrathin LaNiO3. Nature Nanotechnology, 9(6), 443–447. https://doi.org/10.1038/nnano.2014.59
Koo, H. C., Kwon, J. H., Eom, J., Chang, J., Han, S. H., & Johnson, M. (2009). Control of Spin Precession in a Spin-Injected Field Effect Transistor. Science, 325(5947), 1515–1518. https://doi.org/10.1126/science.1173667
Nakagawa, N., Hwang, H. Y., & Muller, D. A. (2006). Why some interfaces cannot be sharp. Nature Materials, 5(3), 204–209. https://doi.org/10.1038/nmat1569
Nanda, B. R. K., & Satpathy, S. (2008). Effects of strain on orbital ordering and magnetism at perovskite oxide interfaces: LaMnO3/SrMnO3. Physical Review B, 78(5), 054427. https://doi.org/10.1103/PhysRevB.78.054427
Ngai, J. H., Walker, F. J., & Ahn, C. H. (2014). Correlated Oxide Physics and Electronics. Annual Review of Materials Research, 44(1), 1–17. https://doi.org/10.1146/annurev-matsci-070813-113248
Ohtomo, A., & Hwang, H. Y. (2004). A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature, 427(6973), 423–426. https://doi.org/10.1038/nature02308
Ramesh, R., & Schlom, D. G. (2019). Creating emergent phenomena in oxide superlattices. Nature Reviews Materials, 4(4), 257–268. https://doi.org/10.1038/s41578-019-0095-2
Reyren, N., Thiel, S., Caviglia, A. D., Kourkoutis, L. F., Hammerl, G., Richter, C., Schneider, C. W., Kopp, T., Rüetschi, A.-S., Jaccard, D., Gabay, M., Muller, D. A., Triscone, J.-M., & Mannhart, J. (2007). Superconducting Interfaces Between Insulating Oxides. Science, 317(5842), 1196–1199. https://doi.org/10.1126/science.1146006
Samal, D., Gauquelin, N., Takamura, Y., Lobato, I., Arenholz, E., Van Aert, S., Huijben, M., Zhong, Z., Verbeeck, J., Van Tendeloo, G., & Koster, G. (2023). Unusual structural rearrangement and superconductivity in infinite layer cuprate superlattices. Physical Review Materials, 7(5), 054803. https://doi.org/10.1103/PhysRevMaterials.7.054803
Tokura, Y., Kawasaki, M., & Nagaosa, N. (2017). Emergent functions of quantum materials. Nature Physics, 13(11), 1056–1068. https://doi.org/10.1038/nphys4274
Tokura, Y., Seki, S., & Nagaosa, N. (2014). Multiferroics of spin origin. Reports on Progress in Physics, 77(7), 076501. https://doi.org/10.1088/0034-4885/77/7/076501
Yang, Z., Ko, C., & Ramanathan, S. (2011). Oxide Electronics Utilizing Ultrafast Metal-Insulator Transitions. Annual Review of Materials Research, 41(1), 337–367. https://doi.org/10.1146/annurev-matsci-062910-100347
Zaanen, J., Sawatzky, G. A., & Allen, J. W. (1985). Band gaps and electronic structure of transition-metal compounds. Physical Review Letters, 55(4), 418–421. https://doi.org/10.1103/PhysRevLett.55.418
Zhang, J., & Averitt, R. D. (2014). Dynamics and Control in Complex Transition Metal Oxides. Annual Review of Materials Research, 44(1), 19–43. https://doi.org/10.1146/annurev-matsci-070813-113258

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Avisos de derechos de autor propuestos por Creative Commons
1. Política propuesta para revistas que ofrecen acceso abierto
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes:
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de reconocimiento de Creative Commons que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).